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Hypervalent Bonding in One, Two, and Three Dimensions: Extending the
Zintl - Klemm Concept to Nonclassical Electron-Rich Networks

Garegin A. Papoian* and Roald Hoffmann*

-

We construct a theory for electron-rich
polyanionic networks in the interme-
tallic compounds of heavy late main
group elements, building a bonding
framework that makes a connection
to well-understood hypervalent bond-
ing in small molecules such as XeF,,
XeF,, and I;-. What we do is similar in
spirit to the analogy between the
Zintl-Klemm treatment of classical
polyanionic networks and the octet
rule for molecules. We show that the
optimal electron count for a linear
chain of a heavy main group element
is seven electrons per atom, six elec-
trons per atom for a square lattice, and
five electrons per atom for a simple
cubic lattice. Suggestions that these
electron counts are appropriate al-
ready exist in the literature. We also
derive electron counts for more com-
plicated topologies, including one-di-
mensional ladders and one dimension-
al strips cut from a square lattice. We
also study pairing (Peierls) distortions
from these ideal geometries as well as
Kother deformations. The presence of

s-p mixing (or its absence) plays a
critical role in the propensity for pair-
ing and, in general, in determining the
geometrical and electronic structure of
these phases. Hypervalent bonding
goes along with the relative absence
of significant s-p interaction; there is a
continuum of such mixing, but also a
significant difference between the sec-
ond-row and heavier elements. We
attribute the existence of undistorted
metallic networks of the latter ele-
ments to diminished s-p mixing, which
in turn is due to the contraction of less-
screened s orbitals relative to p orbitals
down the groups in the Periodic Table.
The number of electrons in the poly-
anionic network may be varied exper-
imentally. An important general prin-
ciple emerges from our theoretical
analysis: upon oxidation a hypervalent
structure transforms into a classical
one with the same lattice dimension-
ality, while upon Peierls distortion the
hypervalent structures transform into
classical ones with the lattice dimen-
sionality reduced. Dozens of crystal

structure types, seemingly unrelated to
each other, may be understood using
the unifying concept of electron-rich
multicenter bonding. Antimonides,
which are explored in great detail in
the current work, conform particularly
well to the set of electron counting
rules for electron-rich nonclassical net-
works. Some deviation up and down
from the ideal electron count is ex-
hibited by known stannides and tellur-
ides. We can also make sense of the
bonding in substantially more compli-
cated alloys, including La;;Mn,Sb;, and
T1,SnTe;. The hypervalent electron
counting scheme developed in this
paper, along with the classical Zintl-
Klemm electron counting rules, gives
an easy qualitative understanding of
bonding in a wide variety of interme-
tallic compounds of heavy main group
elements.

Keywords: bond theory - hypervalent
compounds - solid-state structures

%

1. Introduction

A significant number of pieces of the diverse and important
intermetallic mosaic is made up by phases containing heavy
late main group elements. The majority of these networks
obey classical Zintl-Klemm electron counting rules, among
the most important and useful paradigms in solid-state

[¥] Dr. G. A. Papoian, Prof. Dr. R. Hoffmann
Department of Chemistry and Chemical Biology
and Materials Science Center
Cornell University, Ithaca NY 14853-1301 (USA)
Fax: (+1)607-255-5707
E-mail: rh34@cornell.edu
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chemistry.3] However, many networks built from main
group elements show an unusual, nonclassical local coordi-
nation, for instance, a triangular one (in polyhedra) or a linear
one, as in one-dimensional linear chains or two-dimensional
square sheets. Along with the unusual geometries often come
interesting physical properties such as metallic conductivity.

Some intermetallic systems are electron deficient. Indeed,
first, second, and Group 13 elements form networks!* with an
abundance of triangular faces. This tendency has been
rationalized within the context of a moments theory by a
large and energy-controling third moment for the low electron
count.>® Certain groups of extended electron-deficient
compounds may be understood by the application of

1433-7851/00/3912-2409 $ 17.50+.50/0 2409
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Wade —Mingos rules, which give a guide to magic electron
counts for some common polyhedra.’ 'l An important review
of bonding in electron-deficient intermetallic compounds has
been written by Nesper.[']

On the right side of the Periodic Table (the late main group
elements) bonding in intermetallic phases is very
different. These electron-rich compounds often feature locally
“linear” nonclassical geometries, two-dimensional square
sheets, and a number of fascinating geometries derived from
these.

Electron counting schemes for these unusual electron-rich
geometries are the main subject of this review and antimony is
our entry point. We choose antimony as our workhorse
example, prompted by its rich structural chemistry. However,
our ideas are applicable to a variety of structures of other late
main group elements as well, and we discuss a selection of
these.

Suggestions of appropriate electron counts in the non-
classical geometries encountered in the remarkably rich
chemistry of antimony have arisen from experimental studies.
For instance, Jeitschko and co-workers['> ¥l proposed that one
should count long bonds as one electron in the one dimen-
sional (1D) linear Sb chain in U;TiSbs and in the 2D square Sb
sheet in Ce AgSb,. Nesper' suggested one electron per bond
in the 1D linear chain in Li,Sb,[""! also on the basis of the long
bond length determined experimentally. He also argued!'¥l
that the square Bi sheet in LiBi is stable because of the
relativistic contraction of s orbitals, that is, only p orbitals are
involved in bonding. A similar, more general argument
concerning the contraction (relativistic and nonrelativistic)
of s orbitals down the groups, is one of the cornerstones of our
analysis.

Are the electron counts proposed above a general phenom-
enon characteristic of all late main group elements and, if yes,
what are the reasons behind that? We will provide a
theoretical rationale for these electron counts in two ways:
by using conventional molecular orbital theory!'’l and band
structure analysis."” In addition, we will suggest new optimal
electron counts for a 3D simple cubic lattice, 1D strips cut
from a square lattice, and a number of other nonclassical
frameworks. Most importantly, we will provide and exemplify
an aufbau principle for analyzing any hypervalent network.

In the theoretical section we explain a phenomenon that at
first seems quite disjoint from the above unusual geome-
tries—the important tendency of heavier late main group
elements to remain metallic while lighter elements in the
group undergo Peierls distortion'®l to become semiconductors
or insulators. We also consider Peierls distortion pathways for
various nonclassical bonding geometries, in particular for a
square net. This subject has been studied earlier by our
group! as well as by Lee and co-workers.?*?4 Finally, the
electron counting scheme developed for simple networks with
electron-rich multicenter bonding will show its utility in an
analysis of the bonding in quite complicated anionic sub-
lattices, such as those that occur in the intermetallic phases
La;;Mn,Sb;, and T1,SnTe;.

2. A Roadmap

In order to facilitate reading of this paper a brief
description of the remaining sections is given below:
@ Section 3: The many classical and hypervalent Sb networks
are reviewed. A general electron counting scheme emerges

solid-state, surface-catalytic, and biocatalytic systems.
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for hypervalent networks, which applies to all Sb phases

known to us.

e Sections 4—-8: The major assumptions of our theoretical
model are given. A theory is developed which rationalizes
electron counting in hypervalent networks. The tendency
of heavier elements to form metallic frameworks as well as
the distortion pathways of hypervalent networks is ex-
plored. The interrelationship of electron counting, dimen-
sionality, and Peierls distortion is highlighted.

e Section 9: The theory developed in Sections 4 -8 is applied
to a seemingly complicated La;,Mn,Sb;, alloy. Retrotheor-
etical analysis is introduced as a powerful strategy to
understand solid-state compounds which contain several
sublattices.

e Section 10: We look at linear chains and derivative net-
works made up of main group elements other than Sb.

e Section 11: Electron counting and the stability of a wide
range of binary, ternary, and quaternary phases of
Group 14 elements containing square sheets are discussed
in detail.

e Section 12: The upper stability range of electron counting
in square sheets is examined in chalcogen compounds. The
charge density wave (CDW) distortions of the latter sheets
are reviewed.

e Section 13: Conclusions.

Now we are ready to take a close look at Sb networks in a
wide variety of Sb phases. The observed structures are at the
same time striking and complex, begging to be shown and
explained.

Table 1. Geometries of Sb subnetworks in various compounds.

3. Electron Counting in Individual Structures

The basic idea behind the Zintl - Klemm concept is the transfer
of electrons from more electropositive elements to more elec-
tronegative elements, with the potential for the formation of
strong bonds between the latter. This protocol usually works
well with alkali, alkaline earth, and rare earth elements as elec-
tron donors. Things are not so simple for the transition metals,
where multiple oxidation states are common and the electro-
negativities approach and even surpass those of some main
group elements. Among the hundreds of Sb phases reported
we have selected those where the extent of the electron
donation to the Sb network is unambiguous. This approach
does exclude many transition metal antimonides from Table 1,
which is a selective listing of a variety of Sb phases char-
acterized by classical and nonclassical structural elements.

We included some transition metals in our study for the
following reasons: Firstly, magnetic measurements have been
carried out on some Mn compounds, and this has allowed the
assignment of a nonambigious formal charge to Mn. Secondly,
FeS,-m (marcasite) type transition metal diantimonides show
a very interesting pattern of stacking of Sb—Sb pairs into a 1D
ladder, which is dependent on the metal. Such strips are
related to one of the geometrical patterns we analyze.
Similarly, zirconium phases of antimony contain 1D strips
that are electronically intriguing. We will talk about them in
Section 6.2.

In this section we first apply the Zintl—Klemm electron
counting concept to Sb phases with classical geometries. We

Compound Structure type Geometrical patterns

classical hypervalent
BasSb,?#] Sm;Ge, 0D pairs, atoms
Li,Sr;Sb, 24! Li,Sr;Sb, 0D pairs, atoms
Z.n,Sb,247- 248] Zn,Sb, 0D pairs, atoms
ZnSb#! CdSb 0D pairs
EuNi, 5,Sb,»0 ThCr,Si, 0D pairs
CoSb,™ CoSb, 0D pairs see the text
Ca,,Sb, > Ho,,Ge,, 0D squares, pairs, atoms
CoSb,3! CoAs; 0D squares
REM,Sb, 1530 31] CoAs; 0D squares
Ba,Sb;,*! Eu,Sby " Sr,Sb,P*) Sr,Sb, 0D Sby zig-zag units
KSb*! LiAs 1D helical chains
RbSb252 NaP 1D helical chains
CaSb,,?] EuSb,[*] CaSb, 1D zig-zag chains
KSb,> KSb, 1D ribbon; edge-sharing Sby octahedra
BaSb,+! BaP, 2D 2,3-connected nets
Sbl+l As 2D 3-connected nets
Eu,,MnSb, [+ Ca,,AlSby, 0D atoms linear 0D Sbs units
CrSb,,%%! FeSb,,[2l CoSb, 201 NiSb,571) FeS, 0D pairs see the text
Li,Sb! Li,Sb 0D pairs linear 1D chains
U;MSbs (M =Ti, V, Cr, Mn)[2] “Anti”-Hf;Sn;Cu 0D atoms linear 1D chains
La;MSbs(M = Zr, Hf)B! “Anti”-Hf;Sn;Cu 0D atoms linear 1D chains
LaSh,, CeSb,, SmSb,[258-260. 2] SmSb, 0D pairs 2D square sheets
(LaCrSb;,1 CeCrSb;2011) CeCrSb; 0D pairs, atoms 2D square sheets
BaCu,Sb,>? BaCu,Sb, 0D pairs, atoms square 2D sheets
EuCu,Sb,,?%?l LaNi, 5,Sb,?% CaBe,Ge, 0D atoms 2D square sheets
REM,Sb, P13, 64-70] ZrCuSi, 0D atoms 2D square sheets
YbSb,/ol ZrSi, 1D zig-zag chains 2D square sheets
MgM'Sb;s (M =La, Ce; M’ =Mn, Cu, Zn)!"!l LagMnSbs 0D atoms, 1D Sb; strips, 3D Sb,, network
ZrSb,[1%] Co,Si 1D Sb, strips
ZrSb,1%! ZrSb, 1D Sby strips

[a] RE =La, Ce, Pr, Nd, Sm, Eu; M =Fe, Ru. [b] RE =rare earth element, M =Mn, Fe, Co, Ni, Cu, Zn, Pt, Pd, Cd, Ag, Au.

Angew. Chem. Int. Ed. 2000, 39, 2408 —2448
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show that Sb can act as a “well-behaved” Zintl - Klemm
element. Then, we examine Sb phases containing unusual 1D
linear chains and 2D square sheets, invoking the previously
conjectured electron counting generalizations. We finish this
section by analyzing the sidewise fusion of two 1D linear
chains to produce 1D ladders.

3.1. Classical Geometries: 0D Sb, Pairs and Sb, Squares

The most commonly occurring Sb substructure with an
Sb—Sb bond is an Sb, pair. In theory, the pair can have seven,
six, or five electrons per Sb, which would formally correspond
to single, double, or triple bonds (Scheme 1). However,
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Scheme 1.

bonding is weak and rare for heavier elements, and usually
only o-bonded species are found. The typical range of
observed bond lengths for the Sb, fragment in these phases
is 2.80-2.90 A. An unambiguous Sb—Sb single bond in a
molecular hydrazine analogue, (CH;),Sb—Sb(CHs),, is 2.87 A
is used for calibration. Recently, the first Sb—Sb double bond
(2.64 A) in a molecular compound has been reported.?’)

The overwhelming majority of Sb phases containing just
pairs and atoms conforms to the Zintl — Klemm concept. Thus,
upon completing the octet, an isolated Sb atom should be
formally —3 and Sb in a single-bonded pair —2. We
considered BasSb, as an example (Entry 1 in Table 1). We
do not show the structure, but two of the four Sb atoms per
formula unit are isolated and two form a pair. The charges in
Ba;Sb, can be assigned as (Bas)'**(Sb3om)o-(Sbs*")*-. The
Sb—Sb separation in the pairs is 2.89 A, which is within the
normal range for a single bond. From here on we will use the
label “atom” for an isolated or single atom in a structure.
Similarly, the formal charges on Li,Sr;Sb, (Entry 2 in Table 1)
can be assigned as (Li,)**(Srs3)**(Sb3™)*~(Sbi*™)*~ on the
basis of the multiplicities of Sb positions in the crystal
structure. Note that these simple assignments do necessitate a
knowledge of the structure of the phase, a typical (and
productive) piece of nearly circular chemical reasoning. ¢!

Isolated Sb, squares are also quite common within anti-
mony phases. If one completes an octet around each Sb in the
Sb, square, then one is led to a — 1 charge to each Sb.?’] For
example, Ca;;Sby, contains one isolated Sb, square, four Sb,
pairs, and eight Sb atoms per two formula units (Figure 1).

2412

Figure 1. A perspective view of the Sb sublattice of the Ca;;Sb,, crystal
structure.

Following the Zintl-Klemm viewpoint, these molecular
entities should carry a —1, —2, and —3 charge, respectively.
Indeed, taking into account the multiplicities of the different
kinds of atoms in the crystal structure, a simple charge
assignment is established: (Ca,,)*+(Sbiaa)4-(SbEr)16--
(Sbaom)24-

The presence of transition metals complicates the bonding
picture for the antimony phases with the relatively popular
and fascinating skutterudite?3! (CoAs;-type) structure. For
a detailed description of bonding in these fascinating solids we
refer readers to the original papers of Jung, Whangbo, and
AlvarezP? and Jeitschko and their co-workers."

The picture of bonding is slightly more simple in the binary
representatives of the skutterudite family, such as CoSb;. If
one assigns a — 1 charge to the Sb in squares (classical isolated
Sb,* squares), then Co becomes 3+ in CoSb;.’:32 This d°
electron configuration on octahedrally coordinated Co sat-
isfies the 18 electron rule. Therefore, one expects semi-
conducting behavior for CoSb;, and this has been observed
for isoelectronic CoP;, RhAs;, IrAs;, IrSbs;, and some other
ternary skutterudites.?* I

3.2. Classical Geometries: Zig-Zag Chains

The crystal structure of Ba,Sbs,% Eu,Sb,,?") and Sr,Sb4*)
contains isolated zig-zag chains of Sbg (Scheme 2). The Sb—Sb
bond lengths range from 2.86 to 3.00 A. If one completes an
octet around each Sb atom in the
chain, then the charges can be PR A
assigned as (Ba,)**Sb**Sb~Sb~. /Sb\ /Sb\ 3508
This compound thus obeys the  $spg oSts oShs
Zintl-Klemm electron counting * " g
rules.

In contrast to these isolated
Sby units, the zig-zag chains that we discuss next are extended
one-dimensional arrays. A perspective view of the Sb
sublattice of the KSb crystal structurel is shown in Figure 2.

Scheme 2.

Angew. Chem. Int. Ed. 2000, 39, 2408 —2448
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'l The Sb atoms form a helix, with Sb—Sb
| bonds of 2.83 and 2.88 A. It is natural to
i assign a 1+ charge to the potassium
atom, which makes the antimony center
— 1. The Sb~ ion is isoelectronic to the Te
atom, which indeed forms helical chains
in its elemental structure. The Sb~ ions
{ in RbSb (Table 1) also forms helical
| chains, but with a somewhat different
{ conformation.
\K In contrast to KSb and RbSb the zig-
zag chains of Sb ions in CaSb, and EuSb,
(Table 1) are planar. A perspective view
of the EuSb, crystal structure is given in
Figure 3. The Sb—Sb distance in the
Figure 2. A per-
spective view of the
Sb sublattice of the
KSb crystal struc-
ture.

chains is 2.93 A. These compounds are
also classical, since the cations are diva-
lent (established by magnetic measure-
ments for Eu compounds*!). This as-
signment leads one to a —1 charge on
the Sb center, which would be consistent
with a twofold coordination. In Figure 3
one observes that the Sb chains are
planar.

Why are such Sb~ chains sometimes
helical and sometimes planar? A hint is provided by the
shortest interchain distance in the horizontal planes being
3.54 A (Figure 3), which can be thought of as a secondary

Figure 3. A perspective view of the EuSb, crystal structure. Eu=small
dark spheres; Sb =large light spheres.

interactionl*- %l (this assumption is supported by the near-
linear Sb—Sb--- Sb angle). When we examine the YbSb, and
SmSb, crystal structures, we will consider the possibility of
fusing the 1D zig-zag chains to give a square lattice.

Angew. Chem. Int. Ed. 2000, 39, 2408 —2448

3.3. Classical Geometries: Two-Dimensional Structures

We want to discuss two structures in this subsection: that of
BaSb;*! and that of elemental Sb.*l The former forms a two-
dimensional 2,3-connected Sb net (Figure 4). As in the case of

Figure 4. A perspective view of the Sb substructure of the BaSb; crystal
structure.

the ribbons discussed above, we count three-connected Sb
centers as neutral and two-connected Sb centers as Sb.
Taking into account the site multiplicities in the crystal, the
charges may be assigned as Ba?*Sb’(Sb,)?>~. The Sb—Sb bonds
in the crystal structure are around 2.85 A, within the normal
range. By any criterion, Sb acts as a good Zintl-Klemm
element in this compound.

The crystal structure of elemental As-type Sb (Figure 5) is
easy to understand, yet has some interesting features in it. If
one chooses to ignore the 3.34 A Sb—Sb inter-sheet contacts,

Figure 5. A perspective view of the crystal structure of elemental Sb.

then bonding in elemental Sb can be described as three-
connected neutral Sb atoms that form a two-dimensional
sheet, with each Sb center being appropriately pyramidal.
However, two details of the structure are unsettling. The
3.34 A inter-sheet contact is significantly shorter than an Sb ---
Sb van der Waals contact. Another interesting fact is the slight
elongation of the Sb—Sb bond within the sheets to 2.90 A,
compared with 2.85 A found in the sheets of BaSbs. All these
facts point to the existence of secondary inter-sheet inter-
actions that also weaken the bonding within the sheets. We
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hinted earlier that similar interactions exist between zig-zag
chains in CaSb, and EuSb,. Indeed, under high pressure
(between 6 GPa and 7.5 GPa) elemental Sb undergoes a phase
transformation*] to give a simple cubic structure (Po-type),
which results in equal inter- and intra-sheet Sb—Sb bonds
(2.99 A). Cubic Sb has also been prepared as a metastable
phase by quenching from liquid and vapor.* The Sb—Sb bond
length in that phase is 3.16 A, which is longer than that in Sb
after high-pressure treatment. One can think of elemental As-
type Sb as having undergone a Peierls distortion!'$! from cubic
Sb.*l We will return to this viewpoint in the theoretical part
(Section 6).

The above sections explore the remarkable range of
“normal” Zintl-Klemm type bonding in antimony com-
pounds. But this element does not confine itself to classical
structures. Next we examine the numerous Sb phases with
nonclassical Sb sublattices.

3.4. Hypervalent Geometries: Linear Chains

The simplest nonclassical Sb structure may be that found in
Ca,,AlSb, ™ (see also Eu;,MnSb,*1) in the form of Sb,
linear units. If the charge on Al is 3+, the cationic charge is
31+ per formula unit. In Eu;;MnSb;,, the Eu center is thought
to have a charge of 2+ and Mn correspondingly 3 +. In both
structures there are eight isolated Sb atoms, which contribute
—24 to the charge balance. Therefore, the remaining Sb;
group should carry a — 7 charge. The Sby’~ unit is isoelectronic
with I;~ and XeF,, which are both classical hypervalent or
electron-rich four-electron three-center species. The Sbs
linear geometry and long Sb—Sb bonds (3.20 A in Ca,,AlSb,,,
326 A in Eu,,MnSb,,) are consistent with this suggestion.
Kauzlarich, Fong, and Gallup carried out pseudopotential
planewave density functional theory (DFT) calculationst on
the analogous Ca;GaAs,; structure.’'! Their calculations
were fully consistent with the existence of hypervalent As;"~
units.

A word is in order here about the general framework of
hypervalent or four-electron three-center bonding. Multi-
center bonding is a natural extension of covalent electron-pair
bonding to electron-deficient or electron-rich systems. In the
context of the latter, it was initially described by Rundle for
I;- (or XeF,).>%:34 The reader is also referred to the
important paper by Musher.> If the terminal atoms contrib-
ute only p orbitals (as shown here) or some hybrids of like
symmetry, and the central atom only a single p orbital, one
obtains the set of MOs shown in Scheme 3. In the four

antibonding

SO &0 O — %

nonbonding

SO —+ %

bonding
SO OO O

Sb Sb Sb
Scheme 3.

-+ %
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-electron system (only p orbitals of ¢ type are considered) y;
and y, are occupied. The bonding scheme is modified slightly
by the inclusion of an s orbital on the central atom. In that
case y, becomes somewhat antibonding through out-of-phase
mixture of the central s orbital.

This bonding pattern may be used in a simple description of
the axial bonding in PFs, SF,, and BrF; as well, though
hypervalency in PF; has been questioned by Hiser.’®! For
square-planar systems (XeF,, TeBr,2") one has two perpen-
dicular bonds of this type. The octahedral or deformed
octahedral XeF, (and SbX4*") have three such bonds.’”] SF,
and SbX,~ have two electrons less; however, a similar
octahedral environment is also found in these compounds.&’]

Some people do not like the term hypervalent. We view it as
a historically and heuristically useful categorization of bond-
ing in electron-rich systems, and will use the term interchange-
ably with electron-rich multi-center bonding. Such bonding
occurs in Sb;’-, and we will see it in linear, square net, and
cubic sublattices of antimonides.

We return to our perusal of antimony bonding types.
Extended linear chains of antimony atoms are found in
Li,Sb,l™1 U;MSbs (M =Ti,V,Cr,Mn),l"”l La;MSb;s (Zr,Hf),F!
and other Sb phases. A perspective view of the Li,Sb crystal
structure is shown in Figure 6. There are two types of Sb in the
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Figure 6. A perspective view of the Li,Sb crystal structure. Li = small dark
spheres; Sb =large light spheres.

crystal structure—Sb—Sb pairs and 1D linear chains, and both
types occur in equal numbers. The Sb—Sb pairs are also
stacked into a chain, but the inter-pair Sb—Sb contact is
3.56 A, compared to 2.97 A within the Sb, pair. In the linear
chains all Sb—Sb bonds lengths are equal to 3.26 A. This
distance is long by comparison with an Sb—Sb single bond, but
is definitely in the bonding regime. If one assigns a 1 + charge
to Liions and a —2 charge to the Sb centers in the pairs, then
one can assign a —2 charge also to the Sb atoms in the
extended chains.

Before we take up this assignment in the theoretical
section, we should mention again that Jeitschko and co-
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workers,[' 12l Nesper,'¥l and Mar and co-workersP® have
suggested from empirical calculations that one consider long
Sb—Sb bonds as half bonds (that is, one electron per bond). By
making an implicit assumption of three additional lone pairs
on each Sb atom, these authors have proposed a —2 charge for
each Sb center in a linear chain, that is, three lone pairs and
one bonding electron per Sb center. We will provide below a
more formal theoretical analysis of this proposition.

In the theoretical section we will also consider the
formation of Sb,* pairs as the result of a Peierls (pairing)
distortion in a one-dimensional linear Sb>~ chain with a half-
filled band. What is surprising is that both Peierls distorted
and undistorted chains coexist in the same crystal structure.
The geometrical details alone of this fascinating structure
indicate, we think, that the potential energy surface for Peierls
distortion of Sb networks should be rather soft.

One-dimensional Sb chains are also found in U;MSbs (M =
Ti,V,Cr,Mn)"?l and La;MSbs (M =Zr,Hf).”¥ The Sb—Sb
bonds in the linear chains again are somewhat long for both
series of compounds, being around 3.17 A for the former
series and 3.06 A in the latter. A perspective view of the
La;ZrSbs crystal structure is given in Figure 7. For two formula

Figure 7. A perspective view of the La;ZrSbs crystal structure. La = small
dark spheres; Sb=1large light spheres; ZrSbs octahedra are shown in a
polyhedral representation.

units per unit cell, one could assume that cations donate 6 x
(+3) +2 x (+4) =(+26) electrons to the anionic framework.
There are two kind of Sb atoms present in the crystal
structure. Isolated Sb atoms, which comprise the Sb part of the
face-sharing ZrSb; octahedral chains, occupy a six-fold Wyck-
off position. Thus, they contribute a 6 x (—3) = — 18 charge to
the overall charge balance. The remaining Sb atoms in the
linear Sb chains are found in a fourfold position, therefore
each should carry a —2 charge in order to preserve the
neutrality of the unit cell.’]

A —2 charge per Sb atom in these linear chains was also
suggested for La;MSbs(M = Ti,Hf)® and U;TiSbs.[2l A clear
assignment of charges for the Mn analogue of the latter
compound was not possible.') Sb—Sb bond lengths between
Sb atoms in 1D linear chains vary greatly from compound to
compound (for example, 326 A in Li,Sb and 3.06 A in
SbsMLa; (M =Zr, Hf)).

In summary, there are a number of Sb phases with linear Sb
arrays. An electron count of seven electrons per Sb atom for
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1D linear Sb chains makes sense of the electron counting in
these structures. In these chains the Sb—Sb bonds are
significantly elongated relative to a single Sb—Sb bond.

One final point should be made, which is relevant to the
longer Sb—Sb bonds found in the linear arrays discussed here
and also found in the square nets still to be mentioned. On one
hand this is a reflection of the hypervalent bonding being
weaker than normal electron pair bonding (compare, for
instance, the I-T separation of 2.90 A in I;~ with 2.76 A in
diatomic L,). There is also a connection to be made to donor—
acceptor viewpoints of bonding and “secondary bonding” in
numerous crystal structures. What we see are manifestations
of a continuum between covalent bonding and closed-shell
interactions, a subject that wel” and othersl® have considered
in detail elsewhere.

3.5. Hypervalent Geometries: Square Sheets

It is convenient to begin the discussion of square Sb sheets
by first revisiting the structures of CaSb, and EuSb, (Table 1).
We contemplated already the possibility of the horizontal zig-
zag chains in Figure 3 collapsing into a square sheet. Indeed,
this essentially happens in the YbSb, case (Figure 8).°!
Actually, the “square” sheets in YbSb, are slightly puckered,

Figure 8. A perspective view of the crystal structure of YbSb,. Yb=small
dark spheres; Sb=1arge light spheres.

with Sb-Sb-Sb angles within the sheet of 93° and 86°. The
Sb—Sb bond lengths are significantly longer (3.12 A) than
those found in the zig-zag chains of the EuSb, crystal structure
(2.93 A).

The magnetic susceptibility data for the Yb ion in YbSb, are
consistent with Yb**, with a small (2 % ) admixture of the Yb**
cation. If one assigns a —1 charge to Sb in the zig-zag chains
(Figure 8), then Sb must also carry the same — 1 charge in the
approximately square sheets (there are as many chain Sb
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atoms as those in the square sheet). Similar to a Peierls
distortion of linear Sb?~ chains into the relatively isolated
classical Sb,*~ pairs (see the discussion on Li,Sb in Sec-
tion 3.4), square sheets of Sb™ ions may distort into classical
zig-zag Sb~ chains (which could still have secondary inter-
actions with each other). This, however, does not happen in
YbSb,. Tremel and Hoffmann argued that the existence of a
small amount of Yb** ions in YbSb, suppresses the possible
distortion to a zig-zag chain.'l The electrostatic interactions
within the lattice have to be taken into account as well to
provide a detailed explanation of this behavior.

The crystal structures of EuSb, and YbSb, prompt us to
think about what might happen to an Sb network of this type
when a divalent rare earth element is replaced by a trivalent
one. If we start with the EuSb, crystal structure (Figure 3), two
resolutions come to mind. Upon reduction by one electron per
two Sb atoms one of the two types of zig-zag chains might
break into isolated pairs (RE3*(Sb7e72)~(Sbrer)2-), If the
newly formed Sby™™*~ pairs are appropriately aligned, they
might further fuse into a linear Sb chain. Alternatively, one
could begin with the YbSb, structure with its approximately
square sheets and zig-zag chains. One might guess that upon
reduction the presumably weaker hypervalent bonds within
the square sheets will disrupt before the break-up of
classically bonded zig-zag chains. There is an implicit assump-
tion here that the hypervalent bands, being only partially
filled, would be occupied more easily by extra electrons than
presumably high-lying empty antibonding orbitals of classical
zig-zag chains.

Neither of those alternatives takes place in the SmSb,
crystal structure (Figure 9)! Magnetic measurements for the
isostructural Ce compound, CeSb,, indicate a trivalency of
rare earth cations.[®?l Other rare earth atoms are also thought
to be trivalent in rare earth diantimonides (La also forms an
isostructural phase). The SmSb, structure is best viewed as
derived from the YDbSb, crystal structure by breaking the zig-

Figure 9. A perspective view of the crystal structure of SmSb,. Sm = small
dark spheres; Sb =large light spheres.
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zag chains into isolated pairs. The approximately square
lattice of YbSb, becomes nearly ideal in SmSb, (Sb—Sb
distances in the sheets are 3.03 A and 3.09 A). The Sb—Sb
distance of 2.79 A in Sb, pairs is within a normal Sb—Sb single
bond range. Again the electron count is consistent with a — 1
charge on the Sb atoms in the “square” sheets (Sm>*+(Sbsheet)—-
(Sbrein)).

Perfect square Sb sheets are found!® in the BaZnSb;, crystal
structure (Figure 10). Zn atoms are surrounded by isolated Sb
atoms in a tetrahedral environment. The closest Sb---Sb

Figure 10. A perspective view of the crystal structure of BaZnSb,. Ba=
small dark spheres; Sb =1large light spheres; ZnSb, tetrahedra are shown in
a polyhedral representation.

contact between isolated Sb atoms is 4.49 A, which is clearly
nonbonding. The Sb—Sb bonds in the square sheets are rather
long (3.24 A), which is consistent with the observed trend for
other square sheets. It is reasonable to assume that both Ba
and Zn are dipositive, which requires again a — 1 charge on Sb
atoms in the square sheets. The charges on the elements in this
compound then can be written as Ba?*Zn?*(Sbsheet)~(Sbatom)3-,

Perfect square sheets exist in a wide variety of other anti-
monides. Among the most common of thesel!'3: 4 65, 6, 67 68, 9, 70]
are compounds with a stoichiometry REM,Sb,, where RE
stands for a rare earth, M is a transition metal (M =Mn, Fe,
Co, Ni, Cu, Zn, Pt, Pd, Cd, Ag, Au), and x is usually less or
equal to one. This structure is a variation of the BaZnSb,
crystal structure given above. The rare earth ions in these
compound have been shown” 7% to be tripositive. Since
that 3+ charge is exactly canceled out by a —3 charge on
isolated Sb atoms (one of the Sb atoms is in the square sheet,
one is isolated), the formal charge on Sb in the square sheets is
determined solely by the charge on M, part. If we assume a
— 1 charge on the square sheet Sb atoms, a count we have seen
is consistent in other cases, we are led to a singly charged M
ion if x is near one. The structures where this is plausible are
LaCuyg_5,5b,,1% REAgSD,,l! LaAuSb,,[®! and others. On

Angew. Chem. Int. Ed. 2000, 39, 2408 —2448



Hypervalent bonding

REVIEWS

the other hand, if x is close to 0.5 then we expect the metal to
be dipositive. This assumption seems quite reasonable for
LaZn, 5,Sb,.[*]

For other transition metals in this group of compounds, the
assignment of charges becomes ambiguous. Here we will
discuss only the Mn case, where good magnetic susceptibility
data are available.” %! The x value for these Mn compounds
varies from 0.65 to 0.90. A magnetic moment of 4.3 ug, which
corresponds roughly to four unpaired electrons, has been
calculated for Mn atoms in CeMn,,Sb, (in addition to the
Ce’* magnetic moment). This result led the authors to assign a
3+ charge to the Mn ion (d* configuration). This electron
count then results in a large —2.7 charge per Sb atom in the
sheets, but this fails to explain the relatively short Sb—Sb
bonds in the sheets (3.10 A)—there is very little that would
hold the Sb*’~ centers together.

The Mn ions are located in a tetrahedral environment,
where a high-spin d° configuration will also lead to four
unpaired electrons (Scheme 4). We think that both the

— —
—+— +—
d* d®

Scheme 4.

magnetic data and internal consistency of the structural
information in CeMn,,Sb, allow an interpretation of the Mn
oxidation state in these compounds as + 1. Admittedly, this is
not a usual oxidation state for the Mn ion.

In summary, many structures of antimonides which contain
square or near-square Sb sheets give a consistent charge
partitioning (in the Zintl-Klemm sense) if a —1 charge is
assigned to each Sb atom in the square sheet. This is not an
absolute requirement, for instance if we think about the
CeMn,Sb, phase just discussed, the relatively large range of x
values (0.65-0.9) indicates a fractional band filling in the
square sheets. Eventually, by considering other main group
elements, we will see a similar range of possible counts. The
electron count of six electrons per Sb atom indicates only a
preferred electron count, actual fluctuations around that
number are to be expected, hopefully within a reasonably
narrow range.

3.6. Other Geometries: The Marcasite- and
Arsenopyrite-Type Compounds

Hybrid classical-hypervalent Sb subnetworks are present in
transition metal dipnictides with the marcasite (FeS,) crystal
structure. A perspective view of the FeSb, crystal structurel’!
is shown in Figure 11. One can view the Sb subnetwork as
composed of regular Sb—Sb pairs (2.88 A) that are stacked to
form a one-dimensional ladder structure with an inter-pair
Sb—Sb distance of 3.18 A. An alternative (and perhaps more
conventional) view would be to treat the Sb—Sb pairs as
noninteracting units. A —2 charge is required to complete an
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Figure 11. A perspective view of the crystal structure of FeSb,. Fe =small
dark spheres; Sb =1arge light spheres.

octet around each Sb in the latter case, which leads to a 4 +
charge on the metal center. Since the Sb electronegativity is
not very high it is hard to justify such a high oxidation state on
the transition metal atom, at least for some of the metals listed
in Table 2. Relatively short inter-pair Sb—Sb distances also
cast doubt on this line of reasoning.

Table 2. Geometrical data for the marcasite-type transition metal dianti-
monides.

Compound CrSb,»!  FeSb,2l  CoSb,$256]  NiSb,257]
intra-pair Sb—Sb distance [A] 2.85 288A 282A 2.88 A
inter-pair Sb—Sb distance [A] 3.27 3.19 3.37 3.84

Another approach would be to construct the Sb subnetwork
in FeSb, beginning with a linear Sb chain (Sb—Sb distance of
3.19 A). The electron count for such a chain should be seven
electrons per Sb, as suggested in Section 3.4 and as we will
prove in the theoretical section (Section 4). The next step is to
pair up two linear chains to form the ladder structure. This
would result in strong lone pair—lone pair repulsion
(Scheme 5). To form Sb—Sb bonds between the chains, an
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Scheme 5.

electron should be taken away from each Sb atom. This line of
reasoning results in a — 1 charge on each Sb center, which in
turn corresponds to a formal 2+ charge on Fe ions. The
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resulting d® configuration for the octahedrally coordinated Fe
ion is consistent with the 18e rule.

The analysis for the other metals in Table 2 is less clear. The
intra-pair Sb—Sb distance (bond C in Scheme 5) becomes
larger for Cr, Co, and Ni. In the Ni case the isolated pair view
could be more justified, although again 4+ is an unusual
oxidation state for the Niion. On the other hand, if the Ni ion
had a charge of 2+, then Sb,>~ would have a Sb—Sb double
bond, something not supported by the Sb—Sb bond length
(2.88 A). Some experimental indication of the metal oxida-
tion states would be very helpful in clarifying the issue of
bonding within the Sb subnetworks of the marcasite type
diantimonides. Holseth and Kjekshus!™! carried out magnetic
susceptibility measurements on the marcasite-type dipnictides
but, unfortunately, could not assign oxidation states to the
transition metals. The arsenopyrite —marcasite phase trans-
formation of CoAs, and CoSb, has been studied by Siegrist
and Hulliger.¥ They have detected a phase transition, but the
semiconductor —metal nature of this transition has not been
confirmed. One might expect metallic properties for the
marcasite structure because of the partial filling of the p, band
(z being the chain axis) in evenly spaced one-dimensional
ladders (see the later discussion for more details).

An interesting connection can be made between the
marcasite-type structures and the zig-zag ladders of main
group elements as well as main group—transition metal
elements. If a linear ladder were kinked at every Sb atom,
then a zig-zag ladder would be produced (Scheme 6). An

Scheme 6.

isolated zig-zag ladder contains three-connected classical
atoms (pyramidal); appropriate to these would be an electron
count of five electrons per atom. Zig-zag ladders could be
fused together to produce the characteristic four-connected
networks found in the Baln,-type!™ binary compounds and
the TiNiSi-typel’ ternary compounds.

In the next section we present theoretical arguments for the
conjectured electron counting schemes for nonclassical hyper-
valent networks.

4. Theory: Basic Principles
4.1. Assumptions of the Model

Our calculations, used throughout this work to support
qualitative bonding considerations, are based on the extended

Hiickel (EH) method, an approximate molecular orbital
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(MO) theory.[ 7871 Parameters for extended Hiickel calcu-
lations are given in Appendix I (Section 14).

Key to our analysis will be an assumption of weak n
interactions and weak (although, still significant) s-p mixing.
Heavier main group elements are known to have weak =
bonding, presumably because at the E—E distance set by the
o-bonding framework the p—p m overlap is quite small. Hence,
the first assumption seems plausible. The weak s-p mixing can
be traced to the contraction of the outer s orbital relative to
the p orbitals down the groups in the Periodic Table. We will
elaborate on this (and so understand the effect of including
such mixing) when we discuss the instability of a hypothetical
linear N?~ chain toward a pairing distortion, relative to an Sb>~
chain (such as the one that exists in Li,Sb, for example). For
the heaviest elements this contraction is further enhanced by
relativistic effects, as was pointed out for these particular
systems by Lohr!®! and by Nesper.['*l We will further explore
this subject in this Section 4.6.

4.2. The Linear 1D Chain: A Simple MO Approach

There are several ways to derive an optimal electron count
for a linear 1D Sb chain. We begin with a simple molecular
orbital picture that does not require a band structure analysis.

The chain coordinate system is given in Scheme 7. By

-

Scheme 7.

assuming weak m bonding and an excess of electrons, the p,
and p, orbitals in the chain are essentially lone pairs.
Furthermore, if we assume little s-p mixing occurs we can
consider the s orbital simply as an occupied lone pair. Three
filled lone pairs (Scheme 8) correspond already to six

Scheme 8.

electrons per atom. Therefore, the final electron count will be
determined by the occupancy of the remaining p, orbital,
which emerges as responsible for the presence or absence of
bonding in the chain.

We consider first the oligomers which develop into this
polymer. For a three-atom chain, the molecular orbitals are
well known from the analysis of hypervalent bonding in, say,
I;~ or XeF,.B* 2 5.1 The two lowest orbitals are bonding and
nonbonding, and the highest molecular orbital is antibonding
(see Scheme 3). General bonding notions!!®> suggest the
filling of all orbitals that are not strongly antibonding. In the
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present instance this leads to four electrons in

the p, o system and 18 electrons in lone pairs (s,
p. and p,), that is, an electron count of 22/3
electrons per atom for hypervalent I;~ (or the 2
related XeF,).

Next we consider a linear chain with five
atoms. While the orbitals are o in character, they
are “pentadienyl m-system-like” in terms of their
phase relationships. The chain has three bonding 61
and nonbonding p, molecular orbitals
(Scheme 9), filling which (along with the s, p,,
and p, lone pairs) results in a electron count of
(6+5 x 6)/5=236/5 electrons per atom. The ex-
trapolation is clear®: an odd numbered n- _104

member linear chain has (n + 1)/2 bonding and

a) b)
-280
MO 12
Sby>~ (classical)
+-285
+-290
. E/eV
MO 11 .. Sby”™ (hypervalent)
295
MO 10
MO 9
300

nonbonding p, levels (see Scheme 9) in addition
to 3n s, p,, and p, lone pairs. To fill with two
electrons per level all levels except the anti-
bonding ones, one needs 2(3n+ (n+1)2)=
7n+1 electrons. This amounts to 7+ 1/n elec-
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Figure 12. Walsh diagrams for the bending of Sb; molecules. a) Individual molecular orbital
energies as a function of the bending angle; b) the total energy change for hypervalent Sby’~
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a one-dimensional linear chain, the proposed electron count
of seven electrons per atom is obtained.

Before we derive the same result from a band structure
analysis, we should compare the stability of a linear chain with
this electron count with a kinked (zig-zag) chain. This
comparison is familiar for the three-atom case, that is, for
molecules such as XeF, and SF,. XeF, has the hypervalent
electron count of 7+ % electrons per atom and it is linear,
while SF, has a classical electron count, and it is bent. The
isoelectronic Sb species, both found in the solid state, are Sby’~
and Sb,’~.* 7 The former ion is linear, while the latter one is
bent, which is consistent with the molecular analogues.

A Walsh diagram for bending the Sb; unit is shown in
Figure 12. Indeed, the 22 valence electron hypervalent
structure prefers to be linear (Figure 12a) while the 20
electron classical one prefers to be bent (Figure 12b). The
slope upon bending of the corresponding highest occupied
molecular orbital (HOMO; MO 11) is responsible for the
observed behavior. This MO is significantly destabilized upon
bending, by mixing in an antibonding way with MO 9—one of
the degenerate m orbitals (see Scheme 10, top). The HOMOs
for the classical electron count are the doubly degenerate &
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orbitals (MO 9 and 10). One of those orbitals becomes
stabilized by mixing (now in a bonding way) with the higher
lying MO 11 (see Scheme 10, bottom).

The energetic consequences for bending are enormous. For
example, bending hypervalent Sby’~ from 180° to 110° costs
5.8 eV (Figure 12b). For classical Sby>~ the same bending
leads to a stabilization by 1.85 eV. Clearly, the removal of two
electrons from Sb;”~ has a profound effect on its geometry. We
emphasize this point because the same relationship between
the locally linear and locally bent geometries is seen for
infinite linear and kinked (zig-zag and helical) chains. And the
energetic consequences (studied by us but not detailed here)
are similar.

An even simpler explanation for the preferred geometries
could be given within the VSEPR model.[’” Three lone pairs
on the central atom in hypervalent Sb;’~ occupy the equato-
rial positions in a trigonal bipyramid (Scheme 11, left), while

b Rt Sb
.gb/ . o,
s (1] (1]
Scheme 11.
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the side atoms occupy the axial positions of a trigonal
bipyramid, in a linear arrangement with the central atom. The
corresponding polyhedron for classical Sby’~ is a tetrahedron,
with two lone pairs occupying two vertices, and two side atoms
occupying the remaining two vertices (Scheme 11, right),
creating an Sb-Sb-Sb bent geometry. The VSEPR picture is
useful because it places bonds and lone pairs on a comparable
basis.

On going to the extended geometries, the situation does not
change much. For the classical electron count of six electrons
per atom, zig-zag or helical chains are commonly found
(elemental Te is a good examplel®; another example is the Sb
sublattice in KSbP). On the contrary, the hypervalent
electron count of seven electrons per atom is associated with
linear chains, as exemplified by the Sb chains!'> 238 which we
discussed above. The molecular orbital picture behind this
behavior is similar to the Walsh diagram (Figure 12) and
VSEPR (Scheme 11) arguments given above.

We should mention that our analysis focuses on the
bending coordinate in the structures. The question of the
potential surface for an asymmetric stretch distortion,
especially of the of the hypervalent Sby’~ (toward Sb,*~ and
Sb*") is not addressed. This distortion is easy in some
analogous hypervalent species (for example, I;7) and not in
others (PFs). It is also related to the choice we will see Sb>~
chains make between hypervalent lines and paired distorted
structures.

4.3. Linear 1D Chains: Band Structure Approach

In the previous subsection we demonstrated in one way that
the electron count of seven electrons per atom is comfortable
for a linear chain. Another way to come to this result is to use
the band structure formalism.['”]

The computed band structure of an Sb chain at a 32 A
Sb—Sb distance is shown in Figure 13. If we ignore the s-p
mixing (slight but not absent, as we will see), the shape of the
resulting crystal orbitals is dictated purely by the symmetry
and the topology of orbital interactions. Consider the s band
(Figure 13): At T the crystal orbital is bonding and at Z it is
antibonding. Since the s band is completely filled, its net
effect on bonding is vanishing (all Sb—Sb bonding and
antibonding combinations are filled), or even slightly anti-
bonding (because of the bigger coefficients on the antibond-
ing orbitals).

The m-interacting p, and p, orbitals “run up” along the I'-Z
line in the same manner as the s band (Figure 13). The flatness
of the m band is consistent with our assumption of little
bonding. These two bands are also completely filled, therefore
they do not contribute to bonding. The remaining band is o
type, based on the p, orbital. This band “runs down” from I" to
Z. Midway between I' and Z (at k=+m/2a), the p, crystal
orbital is nonbonding. The upper part of the p, band is
strongly antibonding. Destabilization within the chain would
be expected if this part of the p, band were to be filled.
Therefore, a comfortable electron count (no o-antibonding
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Figure 13. The band structure of a 1D Sb?~ chain with the Sb—Sb distance
of 32A.

orbitals filled) is anticipated for a half-filled p, band. With the
completely filled s, p,, p,, and half-filled p, band we arrive at
the electron count of seven electrons per atom.

Note that the differential between o and it bonding is very
important in setting the favored electron count for hyper-
valent networks in this part of the Periodic Table. The entire
width of the & band is below the center of gravity of the p, o
band, and disparity in the o(p,) versus m(p,, p,) bonding exists.
If this were otherwise, as in linear carbon chains, classical
linear chains would be preferred at much lower electron
counts. Instead of constructing the ¢ chain orbitals from the s
lone pair and the p, “hypervalent” band, as in Sb?>~ linear
chain, two carbon sp hybrids that develop into a band become
a better starting point.**l Taking also into account strong 7t
bonding, linear carbon chains presumably have two double
bonds per carbon atom and an electron count of four electrons
per atom. It is reasonable to think that relatively strong =
bonding ensures the linearity of these chains.

For the electron count of seven electrons per Sb atom, the
linear chain is highly resistant to a kinking distortion.
Molecular orbital considerations behind this were given in
Section 4.2 for the three-atom oligomer Sb;’~ (Scheme 10). In
contrast, an electron count of six per atom strongly favors a
kinking of the linear chain into a zig-zag chain, much in the
same way as for molecular Sby>~.

However, the Sb>~ linear chain, while possessing a reason-
able electron count, is potentially susceptible to a pairing or
Peierls distortion—a subject that we take up next. More
detailed treatment of bonding patterns in infinite chains is
given elsewhere.[$-87]

4.4. Peierls Distortion of a Linear 1D Sb?>~ Chain

As we saw previously, Li,Sb is a remarkable compound
where both distorted (paired) and undistorted linear Sb
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chains coexist in the same crystal structure (see Figure 6). The
Sb—Sb distance in the undistorted chains is 3.26 A and in the
distorted (paired) chains the distance alternates between 2.97
and 3.56 A.

When one sees a pairing one is naturally led to thinking of a
Peierls distortion. A Peierls distortion is the extended system
analogue of a Jahn-Teller distortion. For a given electron
count there is a specific optimal coupling with a lattice
vibration—a phonon mode—which reduces the symmetry of
the lattice. In particular, a pairing distortion is indicated for a
half-filled band.['” 47 88-91]

We already discussed the band structure of a linear Sb chain
in the previous subsection. The band structure shown in
Figure 13 is calculated for a unit cell containing only one Sb
atom. It is not a convenient starting point for the Peierls
distortion, because in the distorted chain the unit cell is
doubled. Therefore, we start our analysis by doubling the
unit cell of an ideal linear 1D Sb chain. In the absence
of a deformation the physics and chemistry of bonding
should not be changed by this hypothetical doubling process
and we should obtain the same results as with the single unit
cell.

What happens to the band structure in Figure 13 when the
unit cell is doubled? There is an inverse relationship between
the length of the direct and the reciprocal lattice vectors. By
doubling the size of the direct lattice vectors, we halve the
reciprocal unit cell. Since the total number of crystal orbitals
must be conserved, there should be twice as many bands in the
new Brillouin zone to compensate for the reduction of its size.
The resulting band structure for the doubled unit cell is shown
in Figure 14a. It can be thought of as a band structure for a
normal cell (Figure 13) folded around vertical lines drawn at
+n/2a and — /2 a. A more detailed account of band structure
folding can be found in ref. [17] and references therein by
Burdett and Whangbo.

Next we examine a specific pairing distortion of an ideal
chain (A=0.1 A; for the definition of A see Scheme 12).

o o o o
32A 32A 3.1A 33A
pairing
Sb——Sb Sb - - Sb——Sb
distortion
(o}
A=0.1A

Scheme 12.

Because of the folding, all bands at Z are doubly degenerate.
The pairing distortion removes that degeneracy, that is, the
lower band of a pair becomes more stabilized and the upper
band becomes destabilized. This may be seen for three pairs of
bands in Figure 14b.

The susceptibility to the pairing distortion depends on the
electron count in the chain. If the original unfolded band was
fully occupied, then the stabilization of the lower branch of
the folded band would not fully compensate the destabiliza-
tion of the upper branch. If the original unfolded band was
only half-occupied (as it is for Sb>~) then the total energy is
clearly lowered. Indeed, a pairing distortion of A=0.1 A in
magnitude occurring in an ideal Sb?>~ chain (Sb—Sb distance of
3.2 A) lowers the total energy by 0.16 eV per doubled unit cell
in an extended Hiickel (EH) calculation. The potential energy
curve as a function of distortion parameter A is given in
Figure 15 (what happens for a N2~ chain is discussed in the
Section 4.5).

So far in our analysis we have neglected electrostatic and
other forces present in real crystals. The simultaneous
existence of Peierls-distorted and -undistorted linear chains
in Li,Sb indicates that other factors can overcome the driving
force for the Peierls distortion. For this to happen, the
potential energy surface for the pairing distortion should be
shallow. Indeed, as Figure 15 shows, the energy lowering
calculated for the pairing distortion in the Sb>~ chain is not
large. A A value of 0.1 A lowers the energy of the structure by
only 0.16 eV.

The implications of the reasoning in the last paragraph are
really important in the general context of the Periodic Table.

Compounds that are susceptible to a Peierls
distortion have partially filled bands, and that

often makes them metallic. If the distortion
occurs, then typically a band gap opens up at
the Fermi level, and a metal to insulator
transition occurs as well. If the potential energy
P2 surface for the Peierls distortion is shallow, the
“chemical pressure” in solids®/ (this is one way

one might think of Madelung and packing
energies) may operate to keep the distortion
from occurring. Then there will be a reasonable
chance of finding late main group compounds
with metallic properties. Indeed, the great
majority of Sb phases containing linear chains
and square sheets are metallic.

One often draws an a “diagonal” line in this
region of the Periodic Table, separating non-
metallic and metallic main group elements.
Could we explain the existence of the metal -
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Figure 14. The band structure of a 1D Sb, chain with a) uniform Sb—Sb separations of 3.2 A,

b) alternating Sb—Sb distances of 3.1 and 3.3 A.
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7 nonmetal “diagonal” line by the shallowness/
steepness of the potential energy surface for
the Peierls distortion? In order to answer this
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N chain (no s-p mixing)

Sb chain
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4 I I I I
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Figure 15. Total energy for Sb?~ and N?- chains as a function of the
distortion parameter A (for a definition of A see Scheme 12).

question, we consider next the Peierls distortion of a hypo-
thetical (and nonexistent) linear N?~ chain.

4.5. Why a Linear 1D N>~ Chain Does Not Exist

The band structure of a linear 1D N> chain is shown in
Figure 16a. We chose an N—N separation of 1.50 A, a little
greater than a single bond; there is no known
structure to guide us here. Two assumptions that
underlay our qualitative description of the band
structure of an Sb chain are no longer valid. First,
there are strong 7 interactions, reflected in the width
(ca. 5 eV) of the = band in Figure 16a. Second, one
notices immediately the unusually high position of the
two “p,” bands.

We remind ourselves of the bonding features of the
p. band, as we analyzed them for the Sb linear chain.
In the picture appropriate for a single unit cell we
found that the lower part of the p, band is bonding (at
Z), the middle is nearly nonbonding (at k =mt/2a) and
the upper part is antibonding (at I'). Upon folding,
these points come at I, Z, and T" of the doubled unit
cell (halved Brillouin zone), respectively (see Figur-
es14a and 16a). Examination of the N—N crystal
orbital overlap population (COOP) curve (Fig-
ure 17a) indicates that at the aforementioned three
points (indeed throughout the p, band) the N—N
interaction is antibonding. Something has changed
from the simple picture that worked so well for Sb.

In deriving the band structure for a linear Sb chain
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Figure 16. The band structure of a 1D N, chain with a) uniform N-N
separations of 1.50 A, b) alternating N—N distances of 1.45 and 1.55 A.

we assumed that no s-p mixing occurs. Our calculations
actually show that some mixing occurs even for Sb. But since
its extent was not large we could safely ignore it. This is not
so for the N case; the s-p mixing is in fact so large that an
avoided crossing occurs between s and p, bands. The “p.”
band has purely p, character at I' and purely s character at
7.1 The s band contribution to the p, band of nitrogen is
30% (averaged over the Brillouin zone), compared to 18 %
for the Sb case.

As aresult of the strong s-p mixing, the “p,” band is greatly
destabilized throughout the whole Brillouin zone and is
strongly N—N antibonding. One would expect intuitively that
a higher energy band would be more stabilized by a Peierls
distortion than a lower energy band, given equal changes in
the overlaps during the distortion. We provide elsewherel™

a) b) c)

-35 I

1 1 1
-1 05 0 05 1

1 \ 1 \ \ \ |
-1 05 0 05 1 -l 05 0 05 1

Figure 17. COOP curves (solid lines) and their integrations (dashed lines) between the
nearest neighbor nitrogen atoms in an ideal chain (a) in a distorted chain with short (b)
and long N—N distances (c); the magnitude A of the distortion is 0.1 A.
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the formal basis for this argument with the help of
molecular perturbation theory.’>*! A word of caution is in
order here. Although s-p mixing destabilizes the “p.” band,
and, therefore, creates favorable conditions for the Peierls
distortion, the Peierls distortion itself is not driven by s-p
mixing. Our calculations indicate that, on the contrary, the
magnitude of the s-p mixing diminishes during the Peierls
distortion process.

We calculated the effect of a pairing distortion of a
relatively small magnitude (A=0.10 A) of an ideal N chain
(Scheme 13). The band structure for an undistorted chain is

] o o o]
1.5A 1.5A 1.4 A 1.6 A
pairing
N N N - - N—N N
distortion
A=0.1A
Scheme 13.

shown in Figure 16a. The stabilization (3.47 eV per N, unit
cell) is an order of magnitude higher than for the correspond-
ing distortion in the Sb chain (0.18 eV per Sb, unit cell).
This relatively small distortion is sufficient to make the lower
(filled) “p,” band (p,; in Figures 16a and b) lose its strongly
antibonding character. The p,; band rehybridizes (namely,
the extent of s-p mixing in it is changed) in such a way that the
sp hybrid lobes grow pointing outward from the new N,
pairs. This significantly reduces the intra-pair N—N negative
overlap population (Figure 17b) more than compensating for
the incriease in the inter-pair N-N overlap population
(Figure 17¢c). The effects are very clear in the integrated
COOP curves.

To clarify further the important role of s-p mixing for the
N-chain distortion we carried out a numerical experiment, in
which the overlaps between the s and p orbitals of N were
simply set to zero (that is, there is no s-p mixing). As may be
inferred from Figure 15, this has an overwhelming effect on
the stability of an ideal N chain—the pairing distortion
becomes strongly disfavored! We trace this unexpected result
to the significant stabilization of the p, band in the ideal N
chain. The midpoint of the p, band (or point Z in Figure 16a)
drops below the corresponding point of the m bands, thus
making the latter the highest occupied band at Z. Since both
bonding and anti-
bonding branches of the m bands near Z are filled (see Fig-
ure 16 a), the pairing distortion raises the total energy. Clearly,
s-p mixing plays an exceptionally important role in the
tendency of a linear N chain to undergo a Peierls distortion.

4.6. The Rationale for Variable s-p Mixing

It is apparent that pairing is much more favorable for an N2~
chain than for a Sb?>~ chain (see Figure 15). Actually, neither
N2~ chains nor N,*~ pairs have yet been found in extended
structures, only isolated nitride (N°-) and molecular azide
(N37) units. Nevertheless, the theoretically derived trend
makes sense; the tendency to pair or, more generally, undergo
a Peierls distortion is much more pronounced at the top of

Angew. Chem. Int. Ed. 2000, 39, 2408 —2448

any group in the Periodic Table. This observation is important,
and is essentially tied to the periodic tendency to undergo a
metal —insulator transition. We trace the effect to a substan-
tially greater s-p mixing in the lighter elements in the
group.

The last question to be answered in this subsection is more
fundamental: Why is s-p mixing greater for the lighter
elements? From the point of view of first-order molecular
perturbation theory two factors influence the strength of an
interaction, which is generally proportional to S}/AE; (S; is
the overlap and AE; is the energy difference between two
orbitals i and j).** °Yl The energy difference between the s and
p orbitals of the heavier elements is smaller then for the
lighter elements.’”™) Therefore, the energy argument would
actually suggest greater s-p mixing for the heavier elements.
However, the overlap term completely reverses this ten-
dency. As a result of the electron—electron interactions, the
poorly screened s orbitals become more contracted®! down
a group in the Periodic Table (Table 3). This contraction of
s orbitals is further enhanced by relativistic effects for
the heavier elements, which have been discussed by several
authors.[%% 14801

Table 3. Average radii and one-electron orbital energies for elements of
Group 5 from Hartree —Fock calculations.*!

N P As Sb Bi
r) [A] 0.70 0.91 1.07 1.26 134
(r) [A] 0.75 1.09 133 1.53 1.64
E,[eV] —2572 —18.96 —18.64 —15.84 —15.00
E, [eV] —15.44 —10.66 —10.06 ~9.10 —8.71

Consequently, as one goes down a group the s-s and s-p
overlaps are much reduced and the s orbitals in general play a
lesser role in chemical bonding. As a reviewer pointed out,
there are other ways to analyze this problem, such as in terms
of polarizability or effective charge. The reader is referred to
the important paper of Kutzelnigg for a deeper discussion.""]

In summary, strong s-p mixing for a N?>~ chain destabilizes
greatly the filled “p,” band, making a Peierls distortion
inevitable. On the other hand, the tendency of an Sb*~ chain
to undergo a pairing distortion is much less pronounced,
which allows the existence of metallic phases that do not do
not undergo a Peierls distortion. Gradual dimunition of s-p
mixing from N to Bi leads to the enhancement of their
potential metallic properties. We think this is a useful, if not
complete, way to think about the “diagonal line” separating
metals from nonmetals in the right part of the Periodic Table.
To deal reliably and quantitavely with the question of the
metal/nonmetal transition the effect of electron-—electron
interactions on the Peierls distortion has to be examined.

In the last two sections we have described only Peierls
distortion of one-dimensional N and Sb chains. For higher
dimensional sublattices incomplete Fermi nesting might
occur, as has been recently shown by D.-K. Seo and R.
Hoffmann for Group 5 elemental structures.*®!

Having described bonding in a linear 1D Sb chain, we are
now ready to generalize our ideas to higher dimensions.
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5. Theory: Hypervalent Bonding in
Two Dimensions

5.1. Electron Counting in a Square Lattice

There are several ways that we might assemble a square
lattice. One can think of a square lattice as a 2D collection of
individual atoms and simply derive its crystal orbitals. An
alternative view is to think of a square lattice as an array of 1D
chains (Scheme 14). Since we discussed the band structure of
an 1D chain in detail above, let’s first use the latter approach.

CECRCR ‘

FER. \

O O ——Sb——Sb——Sb——
© ©

-le per Sb atom ‘ ‘
— = —Sb—Sb—Sph——

Sb
Sb

—Sb——Sb——Sb—Sb—— ‘ ‘
Scheme 14.

We assemble a square Sb sheet in the xy plane, positioning
component 1D linear chains along the x direction (Fig-
ure 18a). There are three lone pairs per Sb atom in a linear Sb
chain, localized now in the s, p,, and p, orbitals. If isolated Sb*~
chains are brought up to each other in the xy plane (see
Scheme 14), repulsion would clearly develop between the p,
lone pairs of the chains.

a) b)
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How can we make the interactions of 1D chains in
Scheme 14 attractive? Faced with the same question about
two approaching CH;~ fragments an organic chemist would
propose a clear solution: to remove one electron from each
CHj;™ lone pair, which in turn would lead to the formation of
the stable C—C bond in ethane. We may do the same with the
linear Sb chains: remove one electron from each p, lone pair.
Bonding interactions then develop in the y direction, much as
they exist in the x direction (in a perfect square lattice the x
and y directions are equivalent). Since we started with seven
electrons per atom in the linear chain, the optimal elec-
tron count for the square lattice should be six electrons per
atom.

Now we discuss the same idea from the point of view of
band structure theory. A square Sb lattice has a square
reciprocal unit cell as depicted in Figure 18b. The special
points in the first Brillouin zone are I, X, Y, and M. The band
structure and crystal orbitals for a generic square lattice have
been discussed many times in the literature.'” 11 We have
recently described in detail the crystal orbitals for an Sb
square lattice.’”’ Here we discuss very briefly the band
structure of a square Sb~ sheet.

In our discussion of a 1D Sb*~ chain in Section 4.2 we found
it possible to neglect the influence of & bonding in the system.
For a square lattice this assumption is still valid—the p, band
(perpendicular to the sheet) in Figure 18c¢ is relatively narrow
and completely filled (Figure 18d). In-plane 7 interactions of
p. and p, bands are also small compared to o interactions. For
example, the dispersion of the o-interacting p, band along the
I'-X symmetry line is much wider than that of the m-
interacting p, band along the same symmetry line. Our other

assumption was the relative unimportance of s-p
mixing for heavy elements. For a square lattice,
s-p mixing is strongest at M (Figure 18c¢), where
an avoided crossing occurs between the s band
and doubly degenerate p, and p, bands. Still, s-p
mixing for a square Sb lattice is much less than
what is found for a square N lattice. Our two
major qualitative assumptions continue to hold
for a square Sb lattice.

The nearest-neighbor Sb—Sb COOP curves
(Figure 18¢) shed further light on the bonding in
the square sheet. The overlap population gen-

E Fermi

erated by the antibonding part of the m band
cancels out its bonding part. The COOP near the
Fermi level is weakly antibonding, although our
qualitative picture implies that it should be
nonbonding. The reason for this discrepancy
was already discussed for an 1D chain—some s-p

mixing does occur. The same part of the band
structure for an N?- chain was strongly antibond-
ing (see Figure 17a).

As for the 1D chain, we need to make a
connection between a square lattice and various
classical geometries for the same electron count

M T YO 02 04 06 08

Figure 18. a) Square sheet of Sb, b) Brillouin zone, c¢) band structure of the square Sb-
sheet, d) p. contribution to the total DOS, e) nearest neighbor Sb—Sb COOP (solid line) and

its integration curve (dashed line).
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(six electrons per Sb atom). One way to do this is
to examine possible pathways for a Peierls
distortion of a square sheet, a subject that we
take up in the next section.
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5.2. Peierls Distortion of a Square Sb~ Lattice—
Classical and Semiclassical Geometries

For a 1D Sb?~ chain, the Peierls distortion viewpoint led
unambiguously (if weakly) to the formation of classical Sb,*~
pairs. The possibilities for Peierls distortion of a square net are
much richer. One systematic way to study them is to use the
Fermi surface nesting approach.?2>8-911 In this method the
reciprocal lattice vector that maximally nests the Fermi
surface is likely to lead to charge density waves (CDW) with
the same wavevector. These most often manifest themselves
in static distortions of the lattice. Since the Fermi surface
topology depends clearly on the number of electrons, the
nesting vector is dependent on the electron count. An elegant
experimental and theoretical study of this dependency for
mixed Sb and Te square lattice has been carried out by Lee
and co-workers,? and the groups of Whangbo and Canadell
have shown the utility of the Fermi surface nesting formal-
ism.®°I Our group has used a different approach to study
possible distortions of a square lattice.l'’] Here we outline
qualitatively the main results of these studies and introduce a
new hypothetical distortion to
ladder chains.

For a qualitative discussion
we are again going to ignore 7
interactions and s-p mixing.
The Fermi surface of an Sb~
square array is then particularly
simple (Scheme 15). We can
think of this Fermi surface as
a superposition of two one
dimensional Fermi surfaces for
the p, and p, bands. As one may
see from Scheme 15, there are
several reciprocal vectors that nest the Fermi surface. First
consider the nesting by the %2 x* vector. This leads to a pairing
distortion in the x direction in real space and has no effect on
the y direction. The structural consequence is that 1D ladder
chains emerge (Figure 19a). Since a Peierls distortion does
not alter the electron count, an electron count for these
ladders is also six electrons per atom (the same as for a square
lattice). Following a different line of reasoning, we proposed
an electron count of six electrons per atom for a ladder
structure when discussing the FeSb, crystal structure. It is
encouraging that our model of bonding in extended linear
networks is internally consistent.

The 1D ladders that we have obtained are classically
bonded in the x direction but are still hypervalent in the y
direction. If the ladders become isolated from each other,
then a new Peierls distortion may occur in the direction of the
chain propagation (nesting vector 2 y* in Scheme 15) leading
to isolated Sb,*~ squares (Figure 19b). The electron count for
noninteracting squares corresponds to completion of an octet
around each Sb, namely, a classical structure. One can also
obtain isolated squares from a square sheet by a single Peierls
distortion with the nested vector Y“x*+%y* (see
Scheme 15). It turns out that this unique vector in the
reciprocal space does not uniquely determine the arrange-
ment of atoms in the real space; it only tells us that there

Scheme 15.
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Figure 19. a) Pairing distortion in the x direction (% x*) leading to
laddertype substructures; b) pairing distortions in both the x and y
directions (Y2 x*+ Y2 y*) resulting in squares; c) zig-zag chain formation
(%2 x* 4+ y*); d) another distortion corresponding to 5 x* + 5 y*; unit
cells are given in dashed lines.

occurs unit cell doubling in both the x and y directions.
However, the movement of individual atoms within the
quadrupled unit cell remains uncertain.

In addition to isolated squares, 1D kinked chains may be
formed as a result of a Peierls distortion. Two such possibil-
ities are shown in Figures 19¢ and d. In the case of a zig-zag
chain formation (Figure 19¢) it is possible to choose an
alternative unit cell with only two atoms per unit cell. In order
to describe the Peierls distortion in the latter case, a non-
orthogonal primitive unit cell in direct space must be used,
which in turn complicates the picture in reciprocal space. A
detailed treatment of orbital interactions that leads to chains
of different topology is given by Tremel and Hoffmann.!""]

It is worthwhile here to introduce a general cautionary note.
Sometimes words like hypervalent bonding might be taken to
imply a greater stability. This may be so, but it also may well
not be so. Consider for instance the salutary and classical
example of I;~. In the gas phase the molecule is symmetrical.
But in the solid state, depending on the countercation, a
multitude of geometries is known, which spans pretty much
the range between noninteracting I~ + I, and symmetrical I5™.
When we get more structures, with linear chains and square
nets, we expect to see a range of structures and distances
“around” these symmetrical archetypes.

6. Theory: Other Topologies
6.1. Electron Counting in a Simple Cubic Lattice

In Section 5.1 we demonstrated in detail the transition from
a one-dimensional chain to a square lattice. The development
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of the simple cubic Sb band structure proceeds in an
analogous way. The only remaining lone-pair p, orbitals for
the square Sb~ lattice (see coordinate system in scheme 14)
interact repulsively when square sheets are brought together
to form a cubic lattice. Therefore, as we argued before, one
electron should be removed from each p, lone pair, so
bonding interactions can develop in the z direction. If a square
sheet had initially six electrons per Sb, this line of reasoning
leads to five electrons per Sb in a stable cubic network.

There are not that many compounds which contain formally
neutral Sb atoms (five electrons per Sb atom). One of the best
known examples, elemental Sb, can be made cubic under high
pressurel®! (a similar high-pressure phase is known for Bil!®).
A metastable cubic phase can also be synthesized by
quenching from liquid and vapor.*¥ Under ambient condi-
tions elemental Sb takes on an As-type structure—three-
connected sheets stacked on top of each other in such a way
(see Figure 5) that a compression along the stacked direction
would result in the formation of a cubic lattice. Turning the
reasoning around, one can think of an elemental Sb sheetlike
structure as derived from a simple cubic lattice through a
Peierls distortion (Figure 20) corresponding to reciprocal
nesting vector ¥ x* 4 y* + 15 747 Notice the similarity
between Figures 19¢ and 20.

Figure 20. Peierls distortion pathway from a cubic lattice to an As-type
three-connected sheet structure (thick lines).

This is hardly the only deformation available to the
system.*] One can come up with many other Peierls
distortions of a simple cubic lattice, ones which would lead
to classical (for example, kinked sheets) and semiclassical (for
example, doubled square sheets) networks.

An interesting problem is posed for us by Po, which has six
electrons per atom. This is the archetype, indeed the only
element to assume a simple cubic structure under ambient
conditions. What might be the source of the seeming contra-
diction with our argument for an electron count of five
electrons per atom in a cubic lattice ? The sixth electron of Po
adds one third of an electron to each p,, p,, and p, bands, and
this might not be enough to destroy Po—Po bonding. Another
reason might be the existence of strong relativistic effects that
we did not explicitly consider in our derivations. Strong spin—
orbit coupling makes p;, atomic orbitals significantly con-
tracted compared to p;, orbitals, which in turn changes the
bonding patterns in the crystal.®! The electron counting
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scheme that we have discussed so far may need to be modified
for elements which have pronounced relativistic spin—orbit
coupling.

von Schnering has brought to our attention the fact that
many binary compounds with an average valence electron
count of five undergo high-temperature or pressure transi-
tions to “more symmetrical” structures with cubic coordina-
tion. The evolution of structural types is GeS—T-
II — NaCl —CsCL10-104)

We have considered so far a linear 1D chain, a square
lattice, and a simple cubic lattice. The last topology that we
examine is a 1D Sb; strip, which we can imagine as being cut
out from a square lattice.

6.2. Extended Networks Built from Finite Hypervalent
Linear Chains

There are a number of structures where an aufbau based on
finite hypervalent linear chains can lead to greater insight into
their electronic structure. For instance, when two linear three-
membered linear chains, which were discussed earlier, share a
central atom, then a square-planar coordination of the central
atom results. Square-planar units can be further condensed
into a 1D ribbon of vertex-sharing squares. The importance of
this construction is based on the persistent nature of the three-
center four-electrons bonds underlying the extended network,
even though these localized three-center orbitals broaden into
bands by interaction with each other and other orbitals.
Consequently, electron counting rules for such extended
structures may be derived in a few easy steps starting with
known electron counts for finite linear chains. This point is
illustrated by the following examples.

One dimensional Sb strips of various width are found in
several binary and ternary Sb phases.’" 195 1% For example,
1D Sb strips of slightly distorted vertex-sharing rhombi
comprise an isolated part of the Sb subnetwork in
La;,Mn,Sbs,.""1 One can imagine these strips (Scheme 16a)
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Q Q Q O
O spo) @] O (@]
O O O O O
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Scheme 16.

as derived from more-symmetrical undistorted strips
(Scheme 16b) through a simple sliding distortion of central
atoms.

What is the optimal electron count for a strip of vertex-
sharing squares? The central Sb atoms in the strips
(Scheme 16b) are located in a square-planar environment,
which is unusual for classical compounds of main-group
elements. Therefore, as a starting molecular model we choose
square-planar hypervalent XeF, (Scheme 17a, the lines here
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are not classical electron pair bonds, just connectivities). In
this molecule the Xe atom is hypervalent while F atoms are
classical (an octet can be completed around each F atom). If
one wants to build a dimer out of XeF,, one has to replace
bridging F atoms by O atoms in order to preserve their
classical electron count (Scheme 17b). In a similar manner, if
one continues to build a trimer, a tetramer, oligomer,
polymer, all the bridging F atoms have to be replaced by
oxygen atoms. Therefore, a hypothetical XeO, polymer
(Scheme 17¢) has classical O atoms and hypervalent Xe
atoms (12 electrons per Xe atom). The electron count in
extended XeO, is 842 x 6 =20 electrons per unit cell. A
neutral Sbs strip contains only 15 electrons per unit cell, which
necessitates an addition of a —5 charge to the unit cell.

An important point must be made about “real” and formal
charges, and the way the latter are used in this work. To define
theoretically a charge on an atom or a fragment one must
choose a wavefunction (namely, the degree of approximation
in computing one), and a way of analyzing that wavefunction
(Mulliken population analysis, Bader partitioning, etc.).

In our work we use formal charges. As in organometallic
chemistry, these are not unambiguous (should CsHs carry a
—1 or 0 charge? Should a halide be counted as anionic or
neutral 7). What is unambiguous is the total electron count, no
matter whether one starts from an initial ionic or neutral
(covalent) assignment. Thus Xe has ten electrons around it in
XeF,, whether one begins with Xe?* and 2F-, or with Xe® and
2F°.

There is still another way of assigning charges, which has a
history in the three-center bonding field, and this is partway
between a starting point based on an ionic (or covalent)
formal charge and one based on a “real” electron distribution.
A Hiickel analysis of the distribution of the four electrons in
the three-center system puts 1.5 electrons on the terminal and
1.0 on the central atom. Such an assignment would lead to Xe*
and two F'?~ centers in XeF,.

In the spirit of Zintl-Klemm formalism, throughout this
paper we will use only formal charges and a “covalent”
formalism. We do this with full awareness of, and respect for,
the other variants prevalent in the literature. To be specific,
we will look at XeF, as formally being derived from a Xe atom
and two F atoms. We will also look at the “isoelectronic” Sby’~
linear molecule as being made up from formal Sb>~ end ions
and a central Sb*~ ion.
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Returning to the Sby®~ strip (Scheme 17d), its electronic
structure is directly related to molecular XeF,. These consid-
erations are supported by detailed band calculations. As we
mentioned above, a sliding distortion is observed in these
structures. This deformation can be analyzed as a solid-state
analogue of a second-order Jahn-Teller distortion. The
details are given in our ref. [99].

The Sbj; strip is the most narrow one that can be cut out
from a square lattice. Wider Sb strips are found in the binary
Zr—Sb phases.'®1] The square two-dimensional Te defect
lattice in the binary Cs;Te,, phase can also be thought of as
being comprised from finite (five-membered) linear
chains.['% 1] Electron counting rules for these ribbons and
sheets will be published elsewhere.['!%]

7. Navigating between Classical and Hypervalent
Structures: Oxidation versus Peierls Distortion

It is time to face a fundamental question: that of the
interrelationship of dimensionality and deformation. The
electron counting regularities we derived did not emerge from
a principle of maximized bonding. Instead they assumed a
certain electron count, and traced the bonding and geo-
metrical consequences. For instance, a linear geometry is
much favored over the kinked classical geometry for a linear
Sb chain with seven electrons per atom (Sb?"). For this
electron count, the only classical alternative to the linear
hypervalent chain consists of isolated Sb,*~ pairs—the result
of the Peierls distortion of the linear chain (Figure 21).

- AfiON
oxidat
Pe;,

erly

Tls dist

classical geometry

(same dimensionality)
hypervalent

geometry .
classical geometry

(reduced dimensionality)

Examples

' ) o‘/(\da{\o“ zig-zag Sb™ chain 1D
ll}lllefir Sb 1D S
chain S
1 digg Sb2-—Sb*" pairs 0D

3-connected Sb? nets 2D
square Sb™ o)

sheet isolated Sb," squares 0D

various zig-zag Sb™ chains 1D

Sb™ ladders 1D
4-connected Sb* nets 3D
cubic Sb°? 3D

lattice isolated Sbgo cubes 0D

various 3-connected Sb” nets 2D

doubled square Sb? sheets 2D

Figure 21. A schematic diagram showing relationships between electron
counting, the Peierls distortion, and the dimensionality.
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However, if we imagine the anion chain in an ionic
atmosphere of cations whose number can vary, the possibility
of a change in electron count of the main group sublattice
opens up. When Sb?~ is oxidized to Sb-, the classical kinked
(zig-zag or helical) chain is much preferred over the linear
chain.

In general, we have an important principle: if one wants to
transform a hypervalent structure into a classical one with the
same lattice dimensionality, one has to oxidize the hyper-
valent structure. The Peierls distortion, which conserves the
electron count, transforms the hypervalent structures into
classical or semiclassical ones with the lattice dimensionality
reduced. Figure 21 summarizes and exemplifies this principle.

We examined briefly in Section 5.2 the Peierls-distortion
pathways of a square Sb™ lattice (see Figure 19). The resulting
classical isolated squares, zig-zag chains, and semiclassical
ladders retain the original electron count of six electrons per
atom (Figure 21), while their dimensionality is reduced from
two to one or zero. Oxidation of the square Sb~ sheet can lead
to a three-connected classical “As-type” Sb® net with the same
dimensionality (2D). A possible mechanism for this trans-
formation might include an intermediate hexagonal net,
which then puckers (Figure 22). The transformation of a
square lattice into a hexagonal net has been described by
Burdett and Lee.*”l We believe that for the electron count of
five electrons per atom the As-type net is much more
stable than the square net. Nevertheless, kinetic
barriers might prevent this transformation, hence
creating a metastable square net.

Oxidation of the cubic Sb? lattice might result in a
four-connected Sb* net, with the preservation of the
original dimensionality. A hypothetical two-step path-
way for the transformation of a simple cubic lattice to
a diamond structure is given in Figure 23. It begins by
orienting the cubic lattice along (111) and looking at it
as a repetition of three double layers (A, A’), (B, B'),
and (C, C; see Figure 23a). In the first step of the
transformation, the double layers flatten, creating
tetrahedral angles within the sheets and separate from
each other (Figure 23b). Next, the double layers are
envisioned as sliding on top of each other, adjusting
their vertical coordinates so as to create the diamond
lattice (Figure 23c¢). Since extensive bond breaking
and bond formation occur during this transformation
(six-connected network changes into four-connected
one), kinetic barriers may preclude the formation of
the diamond lattice.

The Peierls distortion of a cubic lattice reduces its
dimensionality from three to two, one, or zero. One
may use the schematic (and incomplete) diagram of
Figure 21 as an approximate guide for navigating
between the hypervalent and classical networks.

8. Theory: Summary of the Preceding Sections
In the discussion above we derived optimal electron
counting for different hypervalent geometries. We demon-

strated that a linear Sb chain is relatively stable with seven
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Figure 22. A hypothetical pathway connecting a square lattice into an As-
type net. a) Arrows indicate schematically the atom motions and show how
a square lattice might transform into a hexagonal network; b) plus and
minus indicate the out-of-plane motion of atoms of the As-type net (c).

H -

Figure 23. A hypothetical pathway transforming a simple cubic lattice into a diamond
lattice. a) The simple cubic lattice represented as a repeated pattern of six layers: A,
A', B, B/, C, C; b) As-type 3-connected sheets are created with tetrahedral angles;
c) diamond lattice.

electrons per atom, a square Sb sheet with six electrons per
atom, and a simple cubic Sb network with five electrons per
atom. The Peierls distortion of a square sheet may lead to
semiclassical ladders with the same electron count of six
electrons per atom. The analogous distortion of a cubic lattice
might lead to doubled square sheets, with an electron count of
five electrons per atom. By carefully examining the Peierls
distortion pathways of a cubic lattice or a square sheet, one
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may derive electron counting schemes for many of the
resulting classical and semiclassical lattices.

Another topology we considered is that of Sbs strips cut from
a square lattice. By making a connection to molecular hyper-
valent XeF, we were able to derive an electron count of 20
electrons per unit cell (Sb;>"). This sublattice (and other strips)
are subject to a potential second-order Jahn —Teller distortion,
which leads to more stable, classical isolated Sby>~ units.[*’}

At the end we showed the connection between electron
counting, the Peierls distortion, and the dimensionality. The
electron counting scheme that we have suggested for electron-
rich networks is only an approximation, a rough guide to the
beautifully complicated reality of antimonide framework
bonding. One reason for the complexity is the often metallic
character of these networks—fractional filling of the bands is
common. The number of electrons that we derived for each
network indicates only the most likely number of electrons
that can be expected for that particular network. Our
derivations apply to the heavier late main group elements,
where &t bonding and s-p mixing are not important. For the
lighter elements where s-p mixing is important, the Peierls
distorted classical structures are much more favorable, which
is why linear metallic 1D N2~ chains do not exist.

The electron counting considerations that we propose can
be used as a kind of aufbau, the foundation, for more
elaborate analysis. In the following section we demonstrate
how Sb—Sb bonding in the fairly complicated alloy
La;,Mn,Sb; ! can be understood with the help of these
simple electron counting schemes. The applicability of the
proposed electron counting principles to other main group
elements will be examined next.

9. Building Complex Networks from
Low-Dimensional Sb Sheets and Strips

In many cases a given complex structure can be theoret-
ically broken down into simpler pieces, studied as such, and
reassembled back. In this “retrotheoretical analysis”®! the
Zintl - Klemm electron counting scheme is indispensable. The
electron counting schemes developed in this review make the
nonclassical and semiclassical electron-rich multicenter net-
works new building blocks for such a “retrotheoretical
analysis”. We exemplify this process in this section, where
we analyze qualitatively the Sb—Sb bonding in the
La;,Mn,Sb;, alloy. For a more complete discussion of the
bonding in this structure we refer readers to the original
paper.[”]

La;;Mn,Sbs, (Figure 24) is a member of a series of new
ternary compounds (RE;,M,Sbs,) reported recently by Rogl,
Cordier, and co-workers."! Magnetic measurements indi-
catel”!l that rare earth metals are tripositive in all compounds,
and the Mn ions are dipositive in Ce,Mn,Sbs,. If one assumes
that Mn is dipositive also in La;;Mn,Sbs,, then the number of
electrons formally transferred to the Sb network is unambig-
uously calculated as 12 x 3+2 x 2=40.

The Sb sublattice of La;;Mn,Sbs, crystal structure consists
of no less than three noninteracting sublattices—a 3D Sb,,
network (Figure 25b), 1D Sb; strips (see Scheme 16a), and
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Figure 24. a) Unit cell of La;;Mn,Sbs,; b) perspective view of the crystal
structure of La;;Mn,Sbs;; Sb=small spheres; La=medium size spheres;
Mn =large dark spheres (half-occupied).
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isolated Sb atoms. By taking into account the crystal site
multiplicities, the Sby, substructure can be written as
SbiPretSbh PsPSbaem, By taking the retrotheoretical approach
one step further, we break down the three-dimensional Sb,,
network into 2D kinked sheets (Figure 25a). The latter sheets
can be hypothetically flattened into a square lattice. The
stages of this retrotheoretical analysis are indicated in
Figure 26.

The simple building blocks that we have to analyze are
1) isolated Sb atoms, 2) 1D Sb; strips, and 3) square Sb sheets.
According to the Zintl-Klemm concept we assign a —3
charge to isolated Sb atoms, which then contribute a —12
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Figure 26. Schematic representation of “retrotheoretical” disassembly of
La;;Mn,Sbsy,. A side view parallel to the ¢ axis is shown.

charge to the full Sby, network. The 1D Sbj strip (Scheme 16)
should carry a —5 charge, following our earlier analysis. Since
there are two such units in the unit cell of La;,;Mn,Sb;,, they
contribute a — 10 charge.

We begin by assigning a — 1 charge to each Sb atom in a
square lattice. The sheet depicted in Figure 25a can be
derived from a square Sb sheet by kinking at every fifth
diagonal line. A detailed analysis shows that this kinking leads
to s-p hybridization and localization of the m orbitals at the
kinks, but otherwise does not significantly influence the
electronic structure of the square sheet.”” The electron count
remains at six electrons per Sb atom for the kinked sheet. The
stacking of the kinked sheets into a three-dimensional net-
work (Figure 25b) would lead to repulsion between neighbor-
ing sheets as a consequence of the interaction of lone pairs
(Scheme 18). To make the interaction between two neighbor-
ing sheets bonding, one electron has to be removed from each
Sb atom participating in inter-
sheet linkage (a fifth of the total
number of Sb atoms). This

Sb Sb

-2e

— -

Sb Sb

Scheme 18.

rial. The bonding around the Mn center and the fate of the
two electrons are discussed in our original paper.[]

10. Hypervalent Linear Chains and their
Derivatives Made of Other Heavy Main Group
Elements

The hypervalent bonding patterns in Sb compounds con-
form surprisingly well to our electron counting scheme. In this
section we look at hypervalent linear chains of some other
heavy main group elements, mainly Te, Se, and Sn. A selective
compilation of binary and ternary phases containing linear
chains or their derivatives is given in Table 4.

First, we discuss the linear chains in the compounds where
the assignment of the formal oxidation states to cations is
more or less straightforward, then we take up more compli-
cated cases. We demonstrate in this section that the electron
count of seven electrons per atom in the linear chain serves as
a good starting point for the most of these compounds, and
that the deviations from this electron count are observed in a
rather narrow range. In the process we make sense, we
believe, of some pretty incredible structures.

10.1. Simpler Binary Phases

Simple linear Te chains are found in the CuTe crystal
structure.''- 12 The Te—Te bond length between uniformly

Table 4. Heavy main group compounds containing linear chains.

translates into the removal of  Compound

Related Structures Geometrical patterns

s x20=4 electrons from the KSe. Cs.Telll
-5 3s 5 3

dumbbells aligned into a linear chain
linear chains

Sb20207 unit cell, making it CuTel!! 112]
Sby,!o-. TITel263]
The contributions of the iso-  TlsTes™

lated Sb atoms, 1D Sb strips,
and 3D Sb subnetwork to the
total Sb charge are then —12,
—10, and —16, respectively.
The overall —38 charge on the
Sbs, substructure falls two elec-
trons short of the —40 charge
donated by the La and Mn ions.
The disposition of the last two
electrons (from a total of 200
electrons in the unit cell) is a
matter of some interest, and is
no doubt related to the con-
ducting properties of the mate-
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TI,MTe; (M = Sn, Pb)!!'s]

TI,ME, (M = Sb, Bi; E = Se, Te)\!"s!
UTQZ[“S' 120]

ErSe,l'

Dy sUgsTe,!"!!

ME;, (M =Ti, Zr, Hf; E=S, Se, Te)li3l
a-UTe,;

MTh,Se, (M = K, Rb)!12!

Tlys6UTe;)

CsTh,Te,20]

M,Th,E; (M =K, Cs; E = Se, Te)!'”"]
CuTh,Te 1>

CsTiUTe,25)

Cu,sLaTe,!3

Dy;Cu,Te, 31

MM;Teg(M = Cs, Rb; M’ = Ce, Nd) 41
UT65|267]

linear chains with handles
linear chains condensed into a 3D structure

TlsTe, linear chains condensed into a 3D structure
TlsTe, linear chains condensed into a 3D structure
B-ErSe, linear chains

UTe, linear chains

UTe,, -ErSe, linear chains

UTe, dumbbells aligned into a linear chain

ZrTe, dumbbells aligned into a linear chain

ZrSe; CDW-distorted linear chain

ZrTe, linear chain

ZrTe, linear chains

ZrTe, linear chains

ZrTe, linear chains

linear chains
linear chains
linear chains
linear chains kinked at every second atom
linear chains kinked at every second atom
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spaced Te atoms within the Te chain is 3.16 A, a typical
distance for a hypervalent Te—Te bond (3.05 Ain hypervalent
Tes? in Cs,Tes!"?l). One associates two common oxidation
states with the Cuion, +1 and + 2. We believe that the latter is
improbable in this compound, since in that case Te?~ ions
would be expected to be more than 4 A apart from each other.
An assumption of Cu™ leads to Te™, which is consistent with
our electron counting scheme of seven electrons per atom in
the linear chain.

The linear chains in KsSe; and CssTe;!'') have undergone a
pairing distortion, more emphasized for the former com-
pound. The Te—Te intra-pair distance in CssTe; is 2.81 A,
while the Te—Te inter-pair distance is 3.85 A. In addition to
Te, dumbbells aligned into a linear chain there exist also
isolated Te atoms in this compound. Taking into account the
crystal site multiplicities, the charges in CssTe; may be
assigned as (Cs,)*%(Te§*")?~(Tey*™)*~. An electron count of
seven electrons per atom is reasonable for isolated Te, pairs as
well as for Te atoms aligned into a linear chain; we have
discussed this choice in some detail in Section 3.4.

Simple linear chains and their derivatives are found in the
TITe binary phase (Figure 27). In this compound some of the
linear Te chains have “handles” attached to them, with each

Figure 27. A perspective view of the crystal structure of TlTe. Tl =small
dark spheres; Te =large light spheres.

handle oriented perpendicular to the next one. The Te—Te
bond length within the chains in both simple linear chains and
composite linear chains is 3.09 A. The distance between the Te
atoms in the chain and on the sidearms in the composite linear
chains is 3.03 A. This distance, although shorter than the one
within the chains, is still on the hypervalent side of the range
of Te—Te bond lengths.

We may use our electron counting scheme for hypervalent
bonding in the solid state as a starting point for the ration-
alization of the stoichiometry of this compound. We begin by
assigning a — 1 charge to Te atoms in the simple linear chains.
For the linear chains with handles we follow a two-step
procedure, where we imagine the composite chain being
assembled hypothetically from a simple linear chain and
isolated side atoms (handles). A — 1 charge should be assigned
to Te atoms in an isolated linear chain. We prepare “side” Te
atoms for subsequent bonding by making them also have a
charge of —1, so they can contribute only one electron to

Angew. Chem. Int. Ed. 2000, 39, 2408 —2448

bonding. Two such side Te™ ions interact with the lone pair (p,,
p,) on the central Te atom, forming a three-center four-
electron hypervalent bond (Scheme 19). We have seen this
picture earlier (see Scheme 3), when discussing the bonding in
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Scheme 19.

XeF, and I;~ molecules. All three types of Te atoms (simple
chain atoms, central atoms in the composite chain, and
sidearm atoms in the composite chain) carry a —1 charge.
Since Tl is commonly found monopositive, the TI*Te~
formulation seems to be reasonable.

10.2. The Tl;Te; Binary Phase and its Ternary Derivatives

A perspective view of the T1,SnTe; crystal structure is given
in Figure 28. One could perform a retrotheoretical disassem-
bly of the beautiful and intricate SnTe; subnetwork in this

Figure 28. A perspective view of the crystal structure of T1,SnTe;. Tl=
small dark spheres; Te =small light spheres; Sn =large light spheres.

compound in various alternative ways. Since we are obsessed
with linear chains, we view this network as linear SnTe chains
connected together by bridging Te atoms (Figure 28). One
could also imagine this network as being composed of vertex-
sharing SnTe, octahedra, similar to the ReO; network. Notice
that these SnTe, octahedra are then tilted with respect to each
other within horizontal planes. The Sn—Te bond length within
the linear chain is 3.26 A, and between Sn atoms and sidearm
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Te atoms is 3.30 A. These bond lengths indicate hypervalent
bonding between Sn and Te atoms.

We carry out the hypothetical assembly of the SnTes
network in TLSnTe; in two distinct steps. First, we form
linear SnTe chains and then we connect them with bridging Te
atoms. The isolated SnTe linear chain should carry a —4
charge per SnTe unit, since the neutral SnTe unit is short by
four of the fourteen electrons per two atoms needed for an
ideal linear chain. Given this charge on the SnTe unit, each Sn
and Te atom carries three lone pairs (s, p,, and p,) and a p,
chain orbital filled with only one electron (the z direction is
chosen as the SnTe chain propagation axis).

We prepare the bridging Te atoms for subsequent bonding
by making them neutral, which in turn provides two unpaired
electrons per Te atom for bonding with the linear chains. As
we have discussed for the Te chains
with handles in the T1Te phase, three-
center four-electron hypervalent
“Tes bonds form between two side Te
’ atoms and the p,, p, orbitals of the
Sn atoms in the chains (Scheme 20).

:re-/ RN This reasoning leads to a —4 charge
3 '.l.‘.,:.sm,..u-' '\ on the _SpTe3 unit, namely,
N, . (SnTe)* Tey )0, To counterbalance
G /oTe- the negative charge, the Tl atoms

should be monopositive, which is a
oTes typical oxidation state for the Tl ion.
Each Sn atom in this structure plays
the role of the hypervalent central
atom (compare with Xe in XeF, or
XeF,) and participates in two linear
three-center bonds. On the other hand, the sidearm Te atoms
are classically bonded, since the Sn-Te-Sn angle is not linear
(143°). It turns out that if all sidearm Te atoms were made
linear then the structure would still keep the same electron
count! Therefore, one could expect a soft potential energy
surface for bending of the Sn-Te-Sn angle, which in turn might
explain the large value observed for the Sn-Te-Sn angle.

A wide variety of compounds isostructural to T1,SnTe; have
also been reported.''”! In the isoelectronic compound
TI,PbTe; Sn is replaced by Pb, with the same geometrical
features around the Te and Pb atoms as in T1,SnTe;. The
T1,BX, series of compounds (B =Sb or Bi, X = Se or Te) may
be obtained from TI,SnTe; by first doubling its empirical
formula to Tly(SnSn)Te,, then by replacing the SnSn unit by
TISb or TIBi units, and finally by replacing all Te atoms by Se
atoms if appropriate. The Sn positions in TlSnTe; are
randomly occupied by TI and Bi or Sb in TI,BX. Notice that
the substitution of SnSn by TISb or TIBi keeps the same
number of electrons in the system.

Finally, the crystal structure of parent Tl Te; may be derived
from T1,SnTe; in the same way as TlyBX4 was derived. Only in
this case two Sn atoms are replaced by two TI atoms, leaving
the system two electrons less per Tl Tes formula unit. If one
assumes that these two electrons are removed from p orbitals
which are engaged in chain bonding, and given that there are
two chain TITe units in Tl Te,, the electron count becomes
6.5 electrons per T1 or Te atom in the isolated chain. To learn
more about the structural and physical properties of the TlsTe;

Scheme 20.
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family of compounds readers are referred to a recent paper by
Bottcher and co-workers.''! An alternative ionic treatment of
TlsTe, and derivative phases is given by Nordell and Miller.['!7)

10.3. UTe, and its Derivative Phases

The linear Te chains, found in the UTe, crystal structure, are
almost uniformly spaced, with Te—Te bond lengths of 3.05 and
3.07 A.8:19 The U atoms are surrounded by Te atoms in a
bicapped trigonal-prismatic manner, and they are condensed
in the vertical direction through Te, rectangular faces (Fig-
ure 29). Isolated Te atoms are also found in the UTe,
structure, with a 1:1 ratio of chain to isolated Te atoms.

Figure 29. A perspective view of the crystal structure of UTe,. U =small
dark spheres; Te =large light spheres.

If one were to assign a +4 charge to U, a typical uranium
oxidation state, one would force a —2 charge on both the
isolated and chain Te atoms. Given the clearly bonding
interactions between chain Te atoms, Beck and Dausch
propose a +(3+0) charge on the U atoms and a — (1 +0)
charge on the chain Te atoms.'?%] This assignment of charges is
further supported by the substitution of U by trivalent Dy in
UTe, to form Dy, sU,sTe,.['?!l The isostructural 5-ErTe, phase
was also reported.['??] By taking all these facts into account, we
also concur that the oxidation state of U is much closer to +3
in UTe,, and the Te atoms in the linear chains carry
approximately seven electrons per atom, which is consistent
with our electron counting scheme.

10.4. ZrTe; and Related Binary Phases

The ZrTe, crystal structurel'?> 24 s closely related to that of
UTe, (Figure 30). One may arrive at ZrTe; by inserting an
additional plane of linear Te chains into the UTe, structure
(Figure 29). The nearly equidistant linear Te chains in UTe,
are more distorted in ZrTe;, the Te—Te bond lengths being
2.79 A and 3.10 A, respectively.'?* 124l The U atoms in UTe,
share rectangular faces in the vertical direction, which is no
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Figure 30. A perspective view of the crystal structure of ZrTe;. Zr = small
dark spheres; Te =large light spheres.

longer the case for the ZrTe; crystal structure. Zr,Teg slabs
touch each other at van der Waals separation through the
planes of linear Te chains.

If one assumes a — 1 charge on the chain Te atoms and a —2
charge on the isolated Te atoms, then the Te; subnetwork
should carry a —4 charge (Tes™in)2~(Te*°™)2~. Consequently,
this forces a +4 oxidation state on Zr, which seems
reasonable. Since the linear chains are pairwise distorted in
ZrTe;, one would expect a semiconducting behavior from this
compound. This is not so, however. Linear muffin tin orbital
(LMTO) DFT calculations by Stéwe and Wagner indicated
that some Te and Zr bands crossed the Fermi level, and thus
rationalized the metallic conductivity.l'”!! The formal oxida-
tion state of Zr atoms was found to be near +4, as
expected.l'4]

Isostructural TX; binary phases were reported for other
tetravalent metals (T = Zr, Hf, U) as well as for X = Se.l'*’l In
all of these compounds, Te or Se atoms in the linear chains
appear to have a — 1 oxidation state, that is, seven electrons
per atom.

10.5. AT,X; Compounds: Ternary Phases with the
ZxTe; Structure

A large number of ternary AT,X,; (A=K, Rb, Cs, Cu; T=
U, Th; X =Se, Te) compounds have been reported which are
closely related to the ZrTe, binary phase.l'>>'28] In all of these
compounds the T,X, slabs are similar to those found in ZrTe;,
but with monopositive ions intercalated into the van der
Waals gap between the slabs (compare Figures 30 and 31).
Two outcomes are possible upon the introduction of an extra
electron into the T,X; subnetwork—either the T*" atoms
become partially reduced to T3+ or the X~ atoms in the linear
chains are reduced to X',

From the limited data available we suggest that both
scenarios actually take place. Magnetic susceptibility meas-
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Figure 31. A perspective view of the crystal structure of CuTh,Tes. Th=
large dark spheres; Cu=small dark spheres; Te =large light spheres.

urements carried out for the CuTh,Te, ternary phase indicate
an effective magnetic moment of 2.06 u; per unit cell.']
Assuming a +4 oxidation state for the Th atoms, and taking
into account the presumably nonmagnetic nature of both Cu*
ions and of the partially filled broad Te chain bands, one
would expect diamagnetic behavior from this compound.
Therefore, we attribute the paramagnetic behavior of
CuTh,Te, to the partial reduction of Th** ions, which could
make them magnetic. It would follow that the Te atoms in the
chain carry a charge closer to — 1 than to —1.25.

The second scenario—the reduction of linear Se chains,
happens in MThSe; (M =K, Rb).['>l These compounds show
diamagnetic behavior, which suggests a +4 oxidation state of
the Th atoms. Extensive physical measurements, including
Raman spectroscopy, electron diffraction studies, and pair
distribution function analysis, led Kanatzidis and co-workers
to the conclusion that the plane of Se chains undergoes a static
4 x 4 CDW distortion (Scheme 21)['*] with linear Se chains
distorting into Se,>~ dumbbells and with the Se® isolated
atoms completing an octet around each Se atom.

o0 OO OO 00 OO
OO0 0O 0O 00O 00
Gsuper o0 OO0 0O OO OO0
0O 00 OO0 OO
o0 OO 0O 00 OO0
bsub
bsuper

Scheme 21.

The limited set of physical property measurements on the
compounds with an AT,X; stoichiometry suggests that either
tetrapositive T ions are reduced as in CuTh,Te, (paramag-
netic), or the linear X~ chains are reduced as in MThSe, (M =
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K, Rb; diamagnetic), which results in a distortion of the linear
chain into X,* dumbbells and isolated X?>~ atoms. In the
former case, the X atoms in the linear chain carry approx-
imately seven electrons per atom.

10.6. Linear Te Chains Which are not Mononegative

The Tl,5xUTe; crystal is also isostructural to the ZrTes
binary phase and AT,X ternary phases discussed in Sec-
tions 10.4 and 10.5, respectively.'”’l The Te chains, found in
this compound, are almost uniformly spaced at 3.04 and
3.05 A. The magnetic susceptibility measurements indicate an
effective paramagnetic moment of 3.27 ug, which the authors
suggest is close to the typical values for that observed for the
U* ion.'”! If the U ions are indeed tetravalent in this
compound, and assuming no CDW distortions, one is led to a
—1.28 charge on the Te atoms in the linear chains.

A similar situation is observed for the Cu,,sLaTe, ternary
phase, [’ where uniformly spaced linear Te chains carry a
—1.28 charge per Te atom. It is remarkable that in the related
LaTe, binary phase the Te atoms form a square sheet instead
of linear chains (La*(Te*°™)?~Te~). Thus, when an additional
0.28 electrons are introduced into a square Te~ sheet, the
latter disintegrates into linear chains.

Nearly perfect linear Te chains in the crystal structure of
Dy;Cu,Te; have been reported recently by Lee and co-
workers.[3!] Assuming a +3 oxidation state for Dy and a +1
oxidation state for Cu, the authors arrive at a — 1.25 oxidation
state for the Te atoms in the linear chains.

10.7. Summary

We have examined in this section the bonding patterns and
possible electron counting of a selection of binary and ternary
phases of heavy main group elements which contain linear
chains or their derivatives. It appears that the electron count
of seven electrons per atom is dominant in these compounds,
with a few exceptions of 725-7.28 electrons per chain atom
found in Te ternary phases. We argued earlier that an electron
count of six electrons per atom would force the linear chain to
kink, while no bonding at all is expected at an electron count
of eight electrons per atom. We estimate that the effective
range for the electron count for a hypervalent linear chain
might be between 6.5 and 7.5 electrons. The compounds made
and structurally characterized to date point to a still narrower
range of electron counts.

Having looked into the range of electron counts for linear
chains, we next examine the range of possible electron counts
for square sheets of elements of Groups 4 and 6.

11. Square Sheets in the Compounds of Group 4
Elements

Square sheets of Group 4 elements are realized in a wide
variety of compositions and structure types and they offer a

stringent test of our electron counting scheme. We first look at

2434

binary compounds having the ZrSi, structure type, followed
by ternary and quaternary derivatives of ZrSi,. The filled
version of the ZrSi, type, the CeNiSi, structure type, is also
considered. Finally, we examine some ternary compounds
having the CaBe,Ge, structure type, a ternary derivative of
the BaAl, structure.

11.1 Binary M'VX, and M"X, Compounds

We have already encountered the ZrSi, structure type when
discussing the YbSb, binary phase (see Figure 8). In that
compound, which consists of zig-zag chains and square sheets
of Sb atoms, we assigned a — 1 charge to the Sb atoms in both
networks. If one were to replace the divalent Yb cations by
tetravalent ones, and the Sb atoms by Group 4 elements, then
the total number of electrons remains the same.

However, many M'VX, phases crystallize in quite different
structure types, in particular in the TiSi,, CrSi,, ThSi,, and
AlB, structures. The crystal structures and electrical proper-
ties of ZrSi, and polymorphs of TiSi, have been extensively
scrutinized recently for their potential application as contact
materials in ultra-large-scale integrated circuits (ULST).['32-133]
Indeed, some M'VX, structures listed in Figure 32 crystallize

Ti* | Bft |zt | out | T
074A | 0.83A | 0.84A | 1.00A | 1.05 A
N 0.39 | 044 | 044 | 053 | 0.55
; - 0

o0& ThSi, | [ThSi,
Ge A
2.00 A
Sn ;
2.16 A

N
|
I
0.53

Ry/Ry ——

Figure 32. Crystal structure types of M'VX, compounds, where X = Si, Ge,
Sn.[132. 34147 The jonic radii of M ions for coordination number eight
(found in the ZrSi, structure) were taken from the CRC Handbook of
Chemistry and Physics,'*! while the corresponding radii of X were
estimated from averaged metal —element bond lengths in HfSi, (ZrSi,-
type), HfGe, (ZrSi,-type), and ZrSn, (ZrSi,-type) crystal structures. The
ionic radii ratio Ry/Rx is given for each pair. Some of the stoichiometries
exhibit polymorphism, as indicated by the simultaneous inclusion of several
structure types in corresponding fields.

with the same ZrSi, structure type (shown in Figure 33 a), that
is, with zig-zag chains and square sheets of X?~ (six electrons
per X atom).

Given the same electron count for all the compounds in
Figure 32, it is apparent that other factors play a key role in
determining the stability of various structure types. Inspired
by the structural maps of Villars and co-workers!!*®: 14 and by
earlier work of many other authors, we have been able to
separate various structure types into distinct domains using
the metal —element ionic size ratio Ry/Rx as a key parameter

Angew. Chem. Int. Ed. 2000, 39, 2408 —2448
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Figure 33. a) A perspective view of the ThSn, (ZrSi, type) crystal
structure. Th =small dark spheres; Sn =large light spheres. b) A perspec-
tive view of the EuSi, (ThSi, type) crystal structure. Eu=small dark
spheres; Si=1large light spheres.

(Figure 32). The ZrSi, structure is stable between Ry/Rx
ratios of 0.39 and 0.53. We will pick up this point in
Section 11.2 when discussing the crystal chemistry of rare
earth disilicides, digermanides, and distannides.

When Yb** atoms in the YbSb, crystal structure are
substituted by Sm** atoms (see the earlier discussion in
Section 3.5 on Sb compounds), the zig-zag chains accommo-
date the extra electron by breaking up into isolated Sb, pairs,
preserving the electron count of six electrons per atom in the
square sheets. One would like to know if this robust electron
count for the square sheet is characteristic for sheets
comprised of the Group 4 elements as well. For example,
what are the consequences of replacing tetravalent cations by
trivalent and divalent ones?

The structures provide a straightforward answer for the
divalent Ca, Sr, and Eu cations. In these M'X, compounds the
X atoms carry an average — 1 charge, that is, five electrons per
atom. Such an electron count implies a classical three-
connected network. This is indeed what happens: Si atoms
in EuSi, form three-connected networks in both the ThSi,!'*%
(Figure 33b) and AIB,['! structure types (Figure 34a for

il b

Figure 34. a) A perspective view of the YbSi, (AlB, type) crystal structure.
Yb =small dark spheres; Si =large light spheres. b) A perspective view of
the CaSi, (CaSi, type) crystal structure. Ca = small dark spheres; Si = large
light spheres.

YbSi, in the AIB, structure type). In the latter the Si atoms
form a graphite-like sheet sandwiching the metal ions.
Corrugated three-connected As-like sheets are found™ in
the CaSi, crystal structure (Figure 34b), which may be
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transformed under pressure into a three-connected ThSi,
network™! (Figure 33b). SrSi, forms yet another three-
connected Si network,!"™ which also may be transformed
into a ThSi, network under pressure.['>’]

If the ratio of the ionic radii is indeed a critical parameter in
determining the stability of the ZrSi, structure type (Fig-
ure 32), then the larger size of divalent Ca, Sr, and Eul'>® may
be the reason for the absence of this structure type, that is, the
RI/Rx ratio is well over 0.53 (Figure 32). Therefore, we
consider next the substitution of tetravalent cations in MX,
compounds by trivalent rare earth ones, which have ionic radii
comparable to those of Th** and U** ions.

11.2. Binary REX, Phases

Figure 35 shows in graphic form the major structure types
which are assumed by REX, compounds. Let it not be said
that chemistry is about simplicity—no less than eight structure
types are displayed by this isoelectronic group of compounds.

L | et | P | Ndt| osmt| Ggddt

L16A | 1.14A | LI3A| 1124 | 1.08A | 1.05 &

. 0.61 0.60 0.59 0.59 0.57 0.55
1904 || T |
0.58 i 0.57 i 0.56 i 0.56 i 0.54
2004 gy,
Sn 0.54 0.53 0.52 [ A0.52 l 0.50

™ | Dy | HO™| B | Tmt| vb | Lot
1LO4A | 1.03A | LO2A| 1.00A | 0.99A | 099 A |0.97 A
0.55 | 054 | 054 | 053 | 052 | 052 | 051

Si ThSi, GdySi | AR
o ! 25i3
150 B e

052 | 052 | 051 i 0.50 | 0.50 | 0.50
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Geu [ 1
2004 || TbGes |
sy | 049 | 048 | 047 | 046 | 046 | 046 | 045
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e [
2 Gd,Siy
f 1 1 }
0.45 0.50 053 0.55 Ryi/ Ry
~—

TbGez and NdSn2

Figure 35. Crystal structure types of M'"X, compounds, where X = Si, Ge,
Sn.[156. 158177 The jonic radii of M'"' for coordination number eight (found in
the ZrSi, structure) were taken from the CRC Handbook of Chemistry and
Physics.!') The ionic radii ratio Ry/Ry is given for each pair.

As indicated by many authors in the field,[>*1%3] the ratio of
ionic sizes and the degree of nonstoichiometry (defects on X
sites) are the most important factors in stabilizing various
structure types. Our calculated Rypg/Rx ionic ratios strongly
indicate that stability zones exist for all structure types
(Figure 35). The ZrSi, structure type is realized for the
smallest Rpp/Rx ratio, while the tetragonal ThSi, structure
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type and the closely related orthorhombic Gd,Si; structure
type are realized for the largest ratio. For the small ratio range
of 0.50-0.55 several structure type domains coexist, with
TbGe, being a ZrSi, - ThSi, hybrid structure type. Rare earth
disicilicides, RE =Gd, Er, having the Ryg/Rx ratio at the
boundary of ThSi,/Gd,Si; and AlB, stability zones, crystallize
in all three structure types, depending on the temperature and
other conditions (Figure 35).

A simplistic approach to understanding the structural
domain formation in Figures 32 and 35 may be obtained from
perusal of the coordination polyhedra of rare earth metals in
these structure types (Table 5). We have taken into account

Table 5. Coordination number of metal ions in various ME, structure types
presented as a sum of the number of neighboring atoms + the number of
atoms in the next shell, located approximately 10 % further away than the
closest atoms. The Nd atoms in NdSn, are connected to two other Nd atoms
(6*=4M-X+2M-M).

Structure type CrSi,,  ZrSi,
TiSi,

NdSn, AIB,  ThSi,

coordination polyhedron  4+6 8+2 6¥+6 1240 1240

only the closest bonding rare earth—element contacts, and
also for NdSn, two strong Nd—Nd interactions have been
considered. By comparing the data from Table 5 with the
structure maps in Figures 32 and 35, one observes a reason-
able correlation between the ionic size ratio and the higher
coordination number of the rare earth atoms.

To further rationalize these observations we notice that the
ThSi, structure obeys Zintl - Klemm electron counting rules
only for divalent metals, that is, the three-connected X~
network is electronically saturated in M?+(X~), (with a lone
pair of electrons at each Si atom). An extra electron is
introduced by trivalent rare earth metals; this electron could
either reduce the rare earth ions or enter the o* antibonding
orbitals of the X framework. There is neither direct evidence
for the reduction of the rare earth ions nor for significant
weakening of X—X bonding (the Si—Si bond lengths are 2.31
and 2.42 A in Eu?*Si, and 2.28 and 2.43 A in La**Si,; 2.35 A is
a normal Si—Si single bond length).

Still another way to stabilize the system when extra
electrons are present is to introduce defects into the anionic
sublattice. Dangling bonds on the X atoms adjacent to the
defect sites are created in this way; these dangling bonds
could in turn become lone pairs by absorbing additional
electrons.

The explanation given above is consistent with the X atom
deficiency most commonly reported for these com-
pounds.['®2 153 Rare earth disilicides with the ThSi, structure
type are often found with a REX,, 3 stoichiometry. The
number of X vacancies is even higher for the compounds with
the AlB, structure type, for which the X stoichiometry is often
less than REX ;.11 193] Several authors have argued that the
AlB, structures should be stable at even lower electron counts
than the ThSi, ones['” 17 which might be one of the
explanations of the higher X deficiency in these compounds.

By considering the data in Figures 32 and 35 we conclude
that for ion size ratios Ry/Ryx between 0.40 and 0.50, ZrSi, is
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the only structure type that
is available to MX, com-
pounds. This postulation is
supported by the existence
of the TbGe, structure type
(Figure 36) at the boun-
dary of ZrSi,—ThSi, stabil-
ity zones. In the TbGe,
crystal structure half of
the square Ge sheets from
the ZrSi, structure type
undergo a puckering dis-
tortion and merge with the
Ge zig-zag chains above
and below, which creates
finite slabs of the ThSi,
structure type sandwiched
between square Ge sheets.
By assigning a —2 charge
to two-connected Ge
atoms and a —1 charge to
three-connected Ge atoms
in the slabs, we arrive at a
—1 charge on Ge atoms in
the square sheets of
(’I’bz)6+(Ges3'lab)4—(Gesquare)2—.

The electron count of six electrons per atom in square Ge
sheets in the TbGe, structure is reduced to five for REX,
compounds with the ZrSi, structure type. Thus square sheets
of Group 4 elements may also exist for that electron count.
Are there any structural consequences of the five electron
count, since the nonbonding or slightly antibonding region of
square sheet hypervalent bands are emptied in this case (see
the discussion in Section 5)?

We have only the ErSn,["*Istructure to go by. One observes
the following difference between the crystal structures of
ThSn, (ZrSi, type) and ErSn, (ZrSi, type): the distance
between the Sn atoms in the square sheets and Sn atoms in the
zig-zag chains is reduced from 3.90 A in ThSn, to 3.67 A in
ErSn,, although Th** and Er’** have comparable ionic sizes
(see Figures 32 and 35). Moreover, the same distance in the
“electronically saturated” TbGe, crystal structure is 3.81 A, in
spite of Ge being smaller than Sn. We believe that oxidation
of the square sheet from six to five electrons per atom results
in the tendency of “unsaturated” square sheet atoms to form
secondary interactions with the zig-zag chains.

This conclusion is further supported by the light rare earth
stannides crystallizing with the NdSn, structure type.[° 168 In
these compounds the square sheets merge fully with the zig-
zag chains, simultaneously breaking bonds between the zig-
zag chain atoms (Figure 37). This results in a remarkable
layered structure of vertex-sharing octahedra, separated by
rare earth ions.

Vajenine and Hoffmann recently demonstrated that the
electron count in 2D sheets of vertex-sharing Al octahedra
should be around 10-12 electrons per octahedron, which is
significantly less than 22 electrons found in Nd,Sn, (six
electrons coming from Nd, and sixteen electrons from Sn,).['”]
Preliminary calculations indicate that the contraction of s

Th&i

Figure 36. a) A perspective view of
the crystal structure of TbGe,. Tb =
small dark spheres; Ge =large light
spheres.
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Figure 37. a) A perspective view of the crystal structure of NdSn,. Nd=
small dark spheres; Sn =large light spheres.

orbitals and the relative unimportance of & bonding for the
heavier elements (see the earlier discussion in this paper)
could substantially increase the magic electron count for such
networks of condensed octahedra.['®] We expect a 2D lattice
of vertex-sharing octahedra of heavy main group elements to
be stable around 18 electrons per octahedron.' The exis-
tence of short Nd—Nd contacts (3.15 A) in NdSn, implies that
each Nd atom donates less than three electrons to the Sn
subnetwork, which brings down the number of electrons per
octahedron from 22 to 20 or, perhaps, 18.

11.3. Compounds with the CeNiSi, Structure Type

In the discussion above we concluded that when tetravalent
metal atoms in the ZrSi, structure are substituted by trivalent
rare earth ones the electron count in square sheets reduces
from six to five, which induces certain secondary interactions
with zig-zag chains. If it were possible to fill the square-
pyramidal voids in the RESn, series of compounds (ZrSi,
type) with metal cations, then the electron count in Sn square
sheets could, in principle, be brought back from five to six, or
perhaps even seven electrons per sheet atom. Gladyshevskii,
Bodak, and co-workers reported the synthesis and character-
ization of several RELiSn, ternary phases (RE =La, Ce, Pr,
Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) which crystallize with
the CeNiSi, structure, a filled version of the ZrSi, structure.['3!
A perspective view of the isostructural BaCuSn, is shown in
Figure 38. For the purpose of simplicity we have not drawn
connections between Ba/rare earth atoms and the Sn sublattice,
as was shown above for the ZrSi, structure (see Figure 33a).

The magnetic susceptibility measurements indicate that all
rare earth atoms are tripositive in RELiSn,.'®! Given the
plausible assumption of Li being monopositive, we are led to
the RE**Li*(Sn#¢72)2~(Sn*@e)2- formulation, namely, once
again six electrons per square sheet atom. Schifer and co-
workers prepared some isostructural LaT,Sn, compounds (T
being a transition metal atom; T=Cu: x=0.56, T=Ni: x =
0.74, T=Co: x=0.52, T=Fe: x =0.34).'J] According to the
authors, if all these compounds were to be isoelectronic, then
Cu should be 2 + in LaCuy5¢Sn,, Ni 1.33 + in LaNi, 4, Co 2 +
in LaCo,s,Sn,, and Fe 3+ in LaFe,;,Sn,["®? This line of
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Figure 38. a) A perspective view of the crystal structure of BaCuSn,
(CeNiSi, type). Cu=small dark spheres; Sn=larger light spheres; Ba=
the largest light spheres.

reasoning is consistent with Cu sites being fully occupied in
BaCuSn,, since the substitution of La’** by Ba’* and the
simultaneous enhancement of the Cu?* occupation from 0.56 to
1 would keep the number of electrons approximately constant.

The proposed trivalency of Fel'® is supported by the results
of Bodak and co-workers who reported REFe 3,51, compounds
with other rare earth elements (RE=Y, Tb, Ho, Er, Tm,
Lu).['®11t is interesting to note that REFeSi, compounds with
full Fe stoichiometry crystallize with an alternative TbFeSi,
structure type.l' The Ni occupation value in RENi,E, (E =
Si, Ge, Sn) compounds varies from 1.5 to 2, which renders the
determination of its oxidation state difficult.[!8? 185-189] Kumi-
gashira and co-workers have concluded from a high-energy-
resolution photoemission study of CeNiSi, and CePtSi, that
the d bands of Ni and Pt are, respectively, 2.0 eV and 4.4 eV
below the Fermi level. If one assumes that Ni does not
contribute any electrons to the Si sublattice, and given the
valence fluctuation of Ce (from 3.35 at 300 K to 3.65 at 50 K,
as indicated by magnetic susceptibility measurements), one is
led to 5.35-5.65 electrons per square Si atom in this
compound.l'®” 1 Extensive reviews of the CeNiSi, type
compounds are given by Parthé and Chabot and Rogl.['""!]
Proserpio, Chacon, and Zheng('®! provide an alternative
theoretical view of Ge subnetworks in LaNiGe, as donor
layers and acceptors which lead to chain formation.

Now we are ready to examine if the square sheets can be
reduced to have more than six electrons per atom.

11.4. Square Sheets of Group 4 Elements in Compounds
Having ZrSi,-Related Structures

If one takes as a starting point the ZrSi, binary phase, then
an obvious way to introduce extra electrons into the structure

is to replace Group 4 Si by a Group5 or 6 element. Indeed, Si
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may be replaced by more electron-rich Se in the ZrSiSe
ternary compound shown in Figure 39 a.l"?] In principle there
are two anionic subnetworks in the ZrSi, crystal structure that
could absorb these two extra electrons: square sheets and zig-
zag chains. We encountered a similar situation earlier in the
paper when contemplating the consequences of the replace-
ment of divalent Yb in YbSb, (also the ZrSi, structure type)

Figure 39. a) A perspective view of the crystal structure of ZrSeSi (PbFCl
type). Zr=small dark spheres; Si=large light spheres; Se =large dark
spheres. b) A perspective view of the crystal structure of ZrCuAsSi
(ZrCuAsSi type). Zr=small dark spheres; Cu=small light spheres; Si=
large light spheres; As=large dark spheres.

by a trivalent cation. In that case, it turned out that zig-zag Sb~
chains got reduced and broke into isolated Sb,*" pairs, as in
SmSb, (see Figures 8 and 9).

A similar pattern is found also for the ZrSiSe crystal
structure (the PbFCl structure type, sometimes referred to as
the anti-Cu,Sb type, as well as by other names!'*3!). The Se
atoms occupy positions related to zig-zag Si positions in the
Z1Si, structure, but the zig-zag chains disintegrate into
isolated atoms. Hence, to complete an octet around each Se
we assign charges to ZrSiSe as Zr+(Sisauare)2—(Seaom)2-,
Therefore, the electron count of six electrons per square sheet
atom in ZrSi, is preserved as well in ZrSiSe. Isoelectronic
compounds having the same PbFCI structure type have been
reported for most of the chalcogen-Group 4 element-tetrava-
lent metal combinations (see Table 6). The same number of
electrons is also preserved when both the chalcogen and the
Group 4 element are simultaneously replaced by a Group 5
element. The resulting pnictide square sheets then carry six
electrons per atom as well (Th*(Pn2°m)3-(Pnsuare)=; Pn=
As, Sb, Bi).[9+19] We will return to PbFCI type compounds

in the next section when considering rare earth dichalcoge-
nides.

In an isoelectronic substitution of ZrSiSe, tetravalent Zr is
replaced by pentavalent Nb or Ta, and, simultaneously, Se by
As.1971%81 These compounds also crystallize with the same
Cu,Sb structure type, with the As atoms being found in
isolated positions. The assignment of formal charges as
M3+(Sisauare)2-( Agom)3-= (M = Nb, Ta) still suggests an electron
count of six electrons per atom in square Si sheets.

The next step in elaboration of these compounds was taken
by Johnson and Jeitschko, who substituted isoelectronically
pentavalent Nb atoms in NbSiAs by tetravalent Zr or Hf and
monovalent Cu atoms.?”! The crystal structure of ZrCuAsSi is
shown in Figure 39b. Cu atoms insert themselves inbetween
isolated As atoms in a tetrahedrally coordinated environment.
One may also think of the ZrCuAsSi crystal structure as being
derived from a ZrSi, crystal structure by first replacing Si
atoms in the zig-zag chains by As atoms, then inserting a plane
of Cu atoms so as to break zig-zag chains into isolated atoms
(compare Figures 33a and 39b).2% Thus, the electron count
of six electrons per atom in square Si sheets persists for these
quaternary phases as well.

It turns out that it is possible to replace Group 5 As atoms
in ZrCuAsSi and HfCuAsSi back by a Group 4 element.202204]
The resulting CuME, (M = Hf, Zr; E = Si, Ge) ternary phases
crystallize with the same ZrCuAsSi structure type, thus having
one electron less per formula unit. If one assumes that an octet
around each isolated Si or Ge atom, then a — 1 charge has to
be assigned to the Si and Ge atoms in the square sheets. In
discussing the ErSn, crystal structure we have suggested that
“electronically unsaturated” Sn~ square sheets develop sec-
ondary interactions with zig-zag Sn chains. One observes here
a similar trend as well: the Sifdwre—Xaom distance shrinks
gradually as the electron count of the square sheet diminishes
from 6 to 5.5 and then to 5. For instance, the Cu—As and
Cu—Si bond lengths are similar in CuZrAsSi and CuZrSi,,
while the Siswuare— Xaom distance shrinks from 3.58 to 3.37 A.

An intermediate electron count of 5.5 per square sheet
atom is found in a series of compounds with the CuHf,Ge, and
Cu,Zr,Si, structure types (Table 6). As pointed out by Thirion
and co-workers, one may imagine these compounds as
being derived from the ZrSi, crystal structure by inserting
Cu planes into the zig-zag chains in ZrSi,.?* In the CuHf,Ge,
crystal structure, for example, Cu planes break half of the zig-
zag chains rendering the Cu*(Hf,)¥(Ge¥°om)*-(Gerie7e)?—-
(Ges@¢)3~ assignment of charges. The Cu,Zr;Sis crystal
structure is somewhat further modified, having Si, pairs in
addition to square Si sheets and isolated atoms (Figure 40).
The short Si—Si bond in the Si, pairs (2.29 A) suggests that

Table 6. Compounds containing Group 4 elements which crystallize in structure types related to ZrSi,.

Structure type Compounds

Electrons per atom®a"¢

Cu,Sb HfGeS,'"?l HfGeSe, "2 HfGeTe, ' HfSiSe,!"2] HfSiTe, "2 ZrGeS,'") ZrGeSe, ') ZrGeTe, ') ZrSiS,'") ZrSiSe, 2l 6
ZrSiTe," UGeS,2 USiS, 2% USnTe,?™ NbAsSi,["”l TaAsSil'%]
ZrCuAsSi ZrCuAsSi, Ul HfCuAsSi,2U CuHfGe, 2%l CuZrGe, 2 '] CuHfSi, 1202 231l CuZrSi,202-2041[b] 61215101
CuHf,Ge, CuHf,Ge,, CuHf,Si,,”* CuZr,Ge,,?» CuZr,Si,**™ 5.5
Cu,Zr;Sig Cu,Zr;Si 5.5 (see the text)
2438 Angew. Chem. Int. Ed. 2000, 39, 2408 — 2448
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they are oxidized relative to the
single bond Si,*~ formulation, per-
haps to Si,>~ (the Si—Si bond length
in elemental Si with the diamond
structure is 2.35 A; the Si—Si bond
in Si,’~ pairs in BaMg,Si, is
2.48 AR%l),  Assuming the -5
charge on Si, pairs, the remaining
formal charges may be assigned
as (Cu4)4+(ZI‘3)12+(Si§t°m)8_(Si§air)5_
(Sis**¢)3-, namely, 5.5 electrons
per Si atom in the square sheet.
The Si*®*r—Sj*°™ distance of 3.47 A
is intermediate between six (CuZ-
rAsSi) and five (CuZrSi,) electrons
per atom in the square sheet com-
pounds (Table 7).

Upon substituting the Group 4
elements by chalcogens in the ZrSi,
structure, two additional electrons
enter the zig-zag chains and break
them into isolated chalcogen
atoms. A multitude of other sub-
stitutions of the resulting ZrSiS-
like structures by various elements
demonstrates clearly that the elec-
tron count of six electrons per
square sheet atom is really domi-
nant in related crystal structures.
However, reduced electron counts of 5.5 and 5 electrons per
square sheet atom are realized as well. For these compounds,
“electronically unsaturated” square sheets come closer in
distance to the isolated element atoms, as demonstrated
earlier for the RESn, compounds. In the following subsection,
which wraps up our discussion of the square sheets of Group 4
elements, we consider a group of ternary compounds with the
BaAl, structure type.

Figure 40. A perspective
view of the crystal struc-
ture of Cu,Zr;Siz. Zr=
small dark spheres; Cu=
small light spheres; Si=
large light spheres.

11.5. Square Sheets of Group 4 Elements in the
BaAl,-Derived Compounds

Two common ternary derivatives of the BaAl, structure are
the ThCr,Si, and CaBe,Ge, structure types (Figure 41). In the
former one, the most electronegative element X occupies a
single crystallographic site, forming X --- X pairs, which may

Table 7. Selected geometrical data for various ZrSi,-related crystal structures

containing square Si sheets.

Sisquare_x[a] Sisquare_Gjsquare  \[IV_Gjsquare MIV_x[a] Cu_x[a] Electrons

[A] [A] [A] [A] [A]  per
atom®avare

HfSeSi 3.68 2.57 2.82 2.77 - 6
ZrSeSi 3.64 2.56 2.81 2.75 - 6
CuZrAsSi 3.58 2.60 2.83 2.76 2.51 6
CuZr;Siy  3.47 2.64 2.84 2.76 2.44 55
CuZrSi, 3.37 2.63 2.86 2.71 2.53 5
CuHfSi, 3.36 2.64 2.86 2.71 2.52 5

[a] X =Se#om for HfSeSi and ZrSeSi; X = As**™ for CuZrAsSi; X = Si*°™ for

CuZr;Sig, CuZrSi,, and CuHfSi,.
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Figure 41. a) A perspective view of the crystal structure of BaMg,Ge,
(ThCr,Si, type). Mg =small dark spheres; Ge = larger light spheres; Ba=
the largest light spheres. b) A perspective view of the crystal structure of
BaZn,Sn, (CaBe,Ge, type). Zn=small dark spheres; Sn=larger light
spheres; Ba = the largest light spheres.

be bonded. In the CaBe,Ge, crystal structure, X atoms occupy
two distinct crystallographic sites, which results in square
sheets and isolated atoms. Hoffmann and Zheng have
analyzed the variation in X—X interactions in X, dumbbells
in the ThCr,Si, compounds as a function of the filling of the X,
o* orbital for various transition metals.’’””l They have also
considered the formation of CaBe,Ge, structures as a
consequence of donor—acceptor interactions.?®!

In this review we are led to still another perspective on this
fascinating structure. Since X square sheets are present only in
the CaBe,Ge,-type phases we are going to concentrate only
on those. Furthermore, we ignore, for the moment, the
interactions between the anionic X subnetwork and the
remaining cations (which was the focus of the previous work).
From this simplified point of
view, the assignment of charg-
es to alkaline earth members
of this structural family is
rather straightforward: Ca?*-
(Be2),(Geatom)#-(Gesauare)2-
that is, again six electrons per
atom in square Ge sheets. The
rather long Ge—Ge bond
length of 2.84 A within square
Ge?™ sheetsP?®! is consistent
with the hypervalent nature
of those bonds.

The same electron count is
present for other alkaline
earth compounds, namely
BaMg,Pb, (Pb—Pb bond
length is 3.54 A in square
sheets) and BaZn,Sn, (Sn—Sn
bond length is 332A in
square sheets), assuming Zn
is divalent in the latter com-
pound.? The BaMg,Sn,
crystal structure (Figure 42)
is an intergrowth of ThCr,Si,
and CaBe,Ge, structure
types, namely, square Sn

Figure 42. A perspective view of
the crystal structure of BaMg,Sn,.
Mg=small dark spheres; Sn=
larger light spheres; Ba=the
largest light spheres.
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sheets, Sn, dumbbells, and isolated Sn atoms are present
simultaneously.?®! If we follow our usual path and assign a — 4
charge to isolated Sn, a — 6 charge to Sn, pairs, then we are led
again to square Sn®>~ sheets ((Ba,)*"(Mg,)%(Snaom)+—-
(Sngr)e-(Snsare)2-)  The Sn—Sn distance of 3.46 A within
square Sn?~ sheets, although within a hypervalent bonding
range, is noticeably longer than the Sn—Sn distance of 3.13 A
found in square Sn*~ sheets in ThSn,. It is not clear at present
if such a difference in Sn—Sn bond lengths is caused by
electronic or by electrostatic and size factors.

A few MM5X, compounds (M =U, La, Ce, Sm; M’ =Ni,
Cu, Rh, Pd, Ir, Pt) with the CaBe,Ge, structure type have
been reported.['$2 191.2102121 Here we concern ourselves only
with the Cu-containing compounds, where we could possibly
speculate about the possible formal oxidation states of the Cu
atoms. In the MCu,X, (CaBe,Ge,-type) structure there are
two distinct types of Cu atoms, those having tetrahedral and
square-pyramidal coordinations (Figure 41b). We discussed
earlier the proposition of Schifer and co-workers to consider
Cu as dipositive in LaCu, s,Sn,,['* the Cu atoms also having a
square-pyramidal coordination. If one extends this line of
reasoning and assumes square-pyramidal Cu atoms to be
dipositive, and the tetrahedral Cu atoms to be monopositive,
then the following picture emerges for Cu ternary phases with
the CaBe,Ge, structure.

Purwanto and co-workers have reported the UCu,sSn,
crystal structure, in which the Cu deficiency is fully concen-
trated in square-pyramidal sites.?’ If U is assumed to be
tetravalent, one arrives at the U*"(Cur)*(Cugh™")*-
(Snaem)4=(Snsare)2= formulation. This interpretation is con-
sistent with Cu having a full occupancy in related rare earth
compounds (RECu,Sn,, RE=La, Ce, Sm), as the loss of a
single electron in the U/RE substitution is compensated by
additional 0.5 Cu** square-pyramidal ions.['*> 2142171 Although
our suggestion of mixed Cu?>*/Cu* oxidation states is consis-
tent both with the earlier work of Schifer and co-workers,'82!
as well as with the stoichiometries of reported experimental
compounds, it remains somewhat speculative. Unfortunately,
we can say even less about CaBe,Ge,-type compounds
containing Ir, Rh, Ni, Pd, and Pt—a common difficulty in
determining formal oxidation states of these nonmagnetic
transition metal atoms.[?!}215.216.218. 291 Apother interesting
complication of many of these phases is the rich interplay of
Kondo-like and heavy fermion behavior.! 2142161

Ternary alkaline earth compounds having the CaBe,Ge,
crystal structure contain square sheets of Group 4 elements
which carry six electrons per square sheet atom. If one
assumes a mixed Cu*/Cu?* valence in the ternary U/rare earth
compounds, then one is led to six electrons per square sheet
atom in these compounds as well. The difficulty of assigning a
formal charge to other transition metals in CaBe,Ge,-type
phases renders it difficult to make the electron counting in
square sheets of these phases definitive.

11.6. Summary

We have looked in this section at binary, ternary, and
quaternary compounds of Group 4 elements which contain
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square sheets as a structural motif. Square sheets carry six
electrons per atom in MVX, compounds having the ZrSi,
crystal structure, which is consistent with our hypervalent
bonding scheme. When the tetravalent metal is replaced by a
trivalent rare earth one, then square sheets are realized in two
structure types: TbGe, and ZrSi,. The electron count of six
electrons per atom in compounds of the TbGe, type is
reduced to five in ZrSi,-type compounds. In the latter, the
“electronic unsaturation” of square sheets leads to secondary
interactions of the sheets with zig-zag chains. The ultimate
manifestation of this extra bonding is the structural collapse of
square sheets and zig-zag chains into two-dimensional sheets
of vertex-sharing Sn octahedra in the NdSn, structure.

When square-pyramidal voids in the ZrSi, structure are
filled by metal ions, a CeNiSi, structure type is formed. It is
suggested that in most of these compounds the square sheets
of Group 4 elements carry six electrons per atom.

If a substitution is made in the ZrSi, structure so as to inject
more electrons into the anionic subnetwork, then these extra
electrons enter the zig-zag chains, breaking them apart. The
resulting ternary and quaternary phases crystallize in several
structure types, having six electrons per square sheet atom in
most of the compounds. Reduced electron counts of 5 and 5.5
electrons per atom are realized as well, which result again in
certain secondary interactions between square sheets and zig-
zag chains or isolated atoms.

Square sheets of Group 4 elements are also found in the
CaBe,Ge, structure type, a ternary derivative of the well-
known BaAl, structure. For those compounds where the
assignment of oxidation states to metal cations is unambig-
uous, we find an electron count of six electrons per atom in
square sheets. For the Cu-containing ternary phases we have
proposed a mixed Cu?*/Cu* valence, which would also result
in six electrons per square sheet atom in these compounds.
The oxidation states of other transition metals with the
CaBe,Ge, structure type have not been determined.

The overall analysis of the compounds containing square
sheets of Group 4 elements strongly indicates a preferred
electron count of six electrons per square sheet atom.
However, electron counts between five and six electrons per
square sheet atom are realized as well. In certain cases these
unsaturated square sheets develop secondary interactions
with other anionic subnetworks.

Having looked at a large number of compounds containing
square sheets of Group 4 and 5 elements, we have not found
any that carry more than six electrons per square sheet atom.
Square chalcogen sheets provide an opportunity to examine
square sheets which are electron rich relative to our formu-
lation, the last topic of our paper.

12. Square Chalcogen Sheets

In applying our electron counting scheme to square sheets
of chalcogen atoms one is immediately faced with the
following problem: chalcogen atoms carrying six electrons
(the magic number for the square sheet) would be neutral. We
have not really stressed the significance of ionic interactions in
this paper, but it is self-evident that Madelung energies
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influence critically the stability of a particular crystal structure
relative to other alternatives. Given that the square sheets of
chalcogen atoms would be immersed in the matrix of
surrounding cations, their charge neutrality would undermine
ionic forces which would otherwise strongly bind anionic
sheets in the lattice. A possible way to overcome the charge
neutrality problem is to place additional negative charge on
the square chalcogen sheets. However, by thus solving one
difficulty we have simultaneously created another one: those
additional electrons would enter square sheet states which are
strongly antibonding, thus weakening the bonding between
the square sheet chalcogen atoms. In the extreme case, no
bonding interactions are expected between Te?~ ions.

In the following discussion we examine in some detail
square sheets of chalcogen atoms in a variety of binary,
ternary, and quaternary phases. Our goal is to assess
empirically what might be the maximum negative charge
which may be placed on chalcogen atoms in square sheets.
Almost all chalcogen square sheets that we have looked at are
susceptible to a CDW formation, a feature critical for our
subsequent analysis.

12.1. Binary RES,, RESe,, and RETe, Phases

We have discussed the PbFCI structure in some detail when
considering the ZrSiSe ternary phase (Figure 39a). If tetra-
valent Zr is replaced by trivalent Nd and, in addition, Si and
Se are replaced by Te, then the NdTe, structure is obtained
(Figure 43).120:2211 This structure consists of Te square sheets
as well as isolated Te atoms. The Te—Te distance within Te
square sheets is 3.10 A, a typical hypervalent Te—Te bond
length (3.05 A in hypervalent Tes?~ in Cs,Te;.['3])

The electron count of six electrons per square sheet Si atom
was established for the ZrSiSe phase (Zr*(Sisaarc)?--

Figure 43. A perspective view of the crystal structure of NdTe, (PbFCl
type). Nd =small dark spheres; Te =large light spheres.
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(Semom)2=; see Section 11.4). When Zr is substituted by Nd,
one electron is lost, which in turn is over-compensated by two
electrons as Group 4 Si atoms are replaced by Group 6 Te
atoms (the replacement of Se by Te is isoelectronic). The
resulting assignment of charges, Nd**(Te?om)>—(Tesauare)-,
seems to imply the existence of square sheets of main group
elements with the electron count of seven electrons per atom.
However, the story is not so simple. A closer look at the NdTe,
crystal structure data reveals very large in-plane pancakelike
parameters of anisotropic displacement for the square Te
atoms, a feature seen also in the LaTe, and CeTe, crystal
structures.?? 2221 The in-plane Te anisotropy, combined with
the reported Te deficiency for many RETe, phases, points to
possible distortions of square sheets in these com-
pounds.[?20.223225] These distortions are more clearly pro-
nounced for similar rare earth diselenides, so we take a look
at them first. Rare earth diselenides have been reported with
various degrees of nonstoichiometry, which critically influen-
ces their corresponding crystal structures. The stoichiometric
RESe, phases crystallize in a derivative of the PbFCl
structure, in which the square Se sheets are distorted into a
herringbone network of Se, pairs (CeSe,?; LaSe,??" 2281,
PrSe,®1). A schematic diagram of the distortion pathway is
given below (Scheme 22). If the Se lattice were undistorted,
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Scheme 22.

the Se—Se distance would be a uniform 2.98 A, while in the
real herringbone lattice (CeSe,?*) there are Se—Se short
intrapair (2.47 A) and long interpair (3.06 A, 3.06 A, 3.40 A)
distances. Lee and Foran rationalized the Se herringbone
pattern in terms of maximum HOMO -LUMO interactions
between the lone pair on Se, (HOMO) with the Se, o* orbital
(LUMO).2)

Pair formation from square Se~ sheets is perhaps an
indication of the instability of square sheets carrying seven
electrons per atom. It is remarkable that the resulting
“classical” RE3*(Se®°m)>~(SePd)~ compounds obey Zintl—
Klemm electron counting rules. Chen and Dorhout have
prepared rare earth disulfides with the same CeSe, crystal
structure (RE = La, Pr).??l As we have mentioned earlier, the
crystal structures of rare earth ditellurides have been refined
so as to produce undistorted square Te lattices. This, however,
leads to strong in-plane anisotropies.??- 22l DiMasi, Lee, and
co-workers examined LaTe, crystals with a transmission
electron microscopy, and they observed superstructure re-
flections corresponding to the wave vector q=a*/2. Since a
similar doubling of the a axis also occurs in the distortion of
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square Se sheets to the herringbone network discussed above,
the authors examined and found a general agreement between
the experimental diffraction pattern and a simulated diffraction
pattern resulting from a CDW similar to LaSe,.?” Conse-
quently, their study (combined with earlier discovery of strong
square Te anisotropy) points to the instability of square sheets
of seven electrons per atom with respect to a CDW formation.

This conclusion is further supported by the physical
property measurements on LaTe, and CeTe,, carried out by
Kwon and co-workers.[??2 2% 231l The electrical resistivity data
indicates that CeTe, is a semimetal with “extremely low
carrier concentration”.[®!] This picture is consistent with a
CDW formation in conducting square Te sheets, which in turn
would open gaps in most parts of the Fermi surface.

In summary, stoichiometric rare earth diselenides and
disulfides form herringbonelike distorted square sheets, which
indicates that the pair formation from a seven electron per
atom square sheet is a strongly favorable process. The same
conclusion applies to Te~ square sheets as demonstrated by
the CDW formation in LaTe, and CeTe,. The instability of
square sheets carrying seven electrons per atom manifests
itself in another yet way: by creating vacancies in square
sheets. This subject has been discussed in some detail for the
RESe, ., and RETe, , phases by Lee and co-work-
ers,?l- 22232234 following earlier structural work.[?33-2%]

12.2. Binary RETe; and RE,Te; Phases

The NdTe; structure may be thought of as being derived
from the NdTe, structure by doubling all square Te sheets in
the latter (compare Figures 43 and 44). As a result non-
bonding contacts develop be-
tween neighboring square Te
sheets.”¥] One may assign
charges to NdTe; as Nd**-
(Tedtom)2~(Te )=, that is,
only 6.5 electrons reside in
square Te sheets. Since this
is intermediate between the
presumably stable six elec-
trons per atom and the un-
stable seven electrons per
atom electron counts, one
would expect a higher degree
of stability from square Te
sheets in NdTe;.

This is indeed what hap-
pens. An X-ray structural
analysis of SmTe; by Lee
and co-workers indicated on-
ly a slight anisotropy of the
square Te atoms, which points
to a smaller amplitude of the
square sheet distortion.?*]
Transmission electron micro-
scopy measurements on a
number of rare earth tritel-
lurides (RE=La, Sm, Gd,

Figure 44. A perspective view of
the crystal structure of NdTe;.
Nd=small dark spheres; Te=
large light spheres.
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Tb, Dy, Ho, Er, Tm) demonstrated incommensurate CDW
distortions in the square Te sheets, with a sinusoidal modu-
lation of square Te atomic positions.”’l The experimentally
observed superlattice wave vector agrees well with the Fermi
surface nesting vector determined from extended Hiickel
calculations.” The resulting partial band gap opening was
measured directly by angle-resolved photoemission spectro-
scopy (ARPES), which provided direct evidence of the Fermi
surface nesting picture.?* Since some of parts of the Fermi
surface persist, these compounds exhibit metallic proper-
ties.?]

Noél and Levet reported the -UTe; crystal structure to be
isostructural to NdTe;.2*! Magnetic susceptibility measure-
ments were consistent with a +4 oxidation state for the U
atoms, which would correspond to the U*+(Tedom)>—-
(Tes*)2~ assignment of charges.?*!l CDW distortion of the
resulting square Te~ sheets was not examined, a possibility
which would be anticipated from the discussion above.

Consecutive single and double square Te sheets are
separated by isolated SmTe slabs in another related rare
earth—Te binary phase, Sm,Te;. This compound may be
thought of as an intergrowth of NdTe, and NdTe; crystal
structures (not shown here).?! The Sm,Tes crystal structure
refinement by Lee and co-workers showed that Te atoms in
single square sheets were partially occupied and possessed
anisotropic thermal parameters.?*! One could speculate that
the metallic conductivity demonstrated by Sm,Tes occurs
predominantly through less-distorted double sheets of Te
atoms.

The KCuCeTe, quaternary phase is also an intergrowth
compound consisting of CeTe;-like layers and (CuTe™°™)~
layers isolated by K* layers (Cu* is implied).?*) Charges
may be assigned to the overall neutral CeTe; layer as
Ce3*(Terom)2~(Tes™), that is, 6.5 electrons per square sheet
atom. Kanatzidis and co-workers found an incommensurate
CDW distortion of square Te nets, which, however, does not
completely destroy the Fermi surface of this material.?*!

Given the discussion above, one may draw the conclusion
that an electron count of 6.5 electrons per square sheet Te
atom stabilizes somewhat those square sheets, producing only
small amplitude incommensurate CDW. However, strong
distortions are observed in the relatively isolated square
Te??~ sheets in quaternary K,y;Ba,s;AgTe,.?! We examine
this next, as well as the highly unusual zig-zag Te chain
formation from defect square Te sheets found in the ternary
ARE;Teg series of compounds (A=K, Cs, Rb; RE=Ce,
Nd).#l

12.3. K, ;;Ba);AgTe, and ARE;Te; Phases

A perspective view of the K, 3;Bays;AgTe, crystal structure
is shown in Figure 45.%41 The layered structure consists of
square Te sheets and isolated AgTe slabs sandwiched between
K/Ba layers. The assignment of formal charges, (K 13)"*-
(Bag ;) 3+ Agt(Teom)>—(Tesauare) 067 guggests 6.67 electrons
in the square Te sheets. A remarkable feature of the
Ko13Bags;AgTe, crystal structure is the isolated character of
the square Te sheets which neighbor only K/Ba atoms. Thus,
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these square sheets provide
a good opportunity to ex-
amine distortions of the
square Te sheet free from
the interference of other

interactions.

The crystal structure re-
finement of
Kos3Bagg;AgTe,  (carried

out by Lee, Kanatzidis,
and co-workers) indicated
anisotropic thermal param-
eters for the Te atoms in
the square, elongated along
Te—Te bonds.?*! Electron
diffraction studies revealed
a CDW formation, consis-
tent with the semiconduct-
ing nature of this com-
pound (namely, completely
destroyed  Fermi  sur-
face).?Y Second moment
scaled extended Hiickel
calculations suggested sev-
eral distortion pathways;
the lowest energy structure
is shown in Scheme 23. The simulated diffraction pattern
calculated for this distortion agreed well with the experimen-
tal one.?!l Although Tes> trimers are engaged in strong
secondary interactions which maximize their HOMO -

Figure 45. A perspective view of the
crystal structure of K,3;:BaysAgTe,.
Te =medium light spheres; Ag=
small light spheres; Kjs3/Bagg =
large light spheres.
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Scheme 23.

LUMO interactions,*¥ they are essentially classical Zintl-
Klemm anions. It is remarkable that square Te~ sheets
oligomerize into Te,>~ pairs while square Te?*~ sheets distort
into Te;>~ trimers.

Another peculiar distortion of defect square Te sheets is
observed in ARE;Te; ternary phases (A =K, Cs, Rb; RE =
Ce, Nd).?* Their corresponding structures, not shown here,
consists of defect RETe; layers (see Section 12.2) sand-
wiched between alkali cations. Te defects occur in square
sheets, which leads to the assignment of charge as
AT(RE;)*H(Tegom)5(Te™*)*~. The authors were able to
refine further the Te positions in distorted square sheets,
which produced the superstructure shown in Figure 46. This
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Figure 46. The defect-distorted square Te lattice in KNd;Teg.

square lattice distortion was predicted earlier by Lee and co-
workers on theoretical grounds.[*?

Defect square Tes*~ sheets in ARE;Teg break into Tes>~
classical trimers and infinite zig-zag Te,>~ chains (see Fig-
ure 46). We examine the electron counting in the latter zig-zag
chains using the following simple arguments: Te zig-zag chains
consist of two types of Te atoms—those having bent and linear
local geometries. Two-connected bent Te atoms are classical,
thus, carry six electrons (no charge). Two-connected linear Te
atoms should be compared to Xe (as in XeF,), therefore, they
carry a —2 charge. On adding up the charges on two Te atoms
one arrives at the Te,?~ formulation, which agrees with the
experimental assignment of charges. The semiconducting
behavior of these compounds is consistent with the strongly
distorted nature of square Te sheets.

Square Te??~ sheets in K ;Ba, ¢;AgTe, are strongly distorted
into classical Te;?~ trimers, which demonstrate semiconduct-
ing properties. Defect square Tes*~ sheets in the ARE;Teg
series of compounds are also oligomerized into Te;?~ classical
trimers and unusual infinite zig-zag Te,>~ chains. The electron
count in the latter may be derived by taking into account the
local bonding environment of Te atoms. Considering all the
experimental evidence, one is led to believe that square sheets
with an electron count of more than 6.5 electrons per atom are
highly unstable with respect to a CDW formation.

12.4. Summary

One has to apply our electron counting scheme to chalcogen
square sheets with caution, since six electrons per atom
chalcogen atoms would have a neutral charge. Such neutrality
would provide minimal interactions of these sheets to the
surrounding cationic lattice. If additional negative charge is
placed on square sheets, then a significant strengthening of
ionic interactions is expected, at the cost of populating
antibonding states of the square chalcogen sheet. The inter-
play between the latter two competing forces determines the
narrow range of electron counts for which undistorted square
sheets of chalcogen atoms are known to exist.
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By analyzing compounds containing mononegative square
chalcogen sheets one may draw a conclusion that these sheets
are highly unstable with respect to formation of a classical
dichalcogen pair. This is explicitly seen for stoichiometric rare
earth diselenides and disulfides, in which case a herringbone
network of Se,>~ (S,?7) pairs is found. While undistorted
square sheets are expected to be metallic, the latter com-
pounds are semiconducting, which points to complete opening
of the Fermi gap. Stoichiometric rare earth ditellurides are
subject to CDW formation with presumably the same
herringbone pattern structure, as demonstrated for LaTe,.

Nonstoichiometric rare earth diselenides and ditellurides
contain defective square sheets, which are strongly distorted
into classical pairs and chalcogen atoms. These species are
engaged in strong secondary contacts with each other, max-
imizing the interactions between the lone pair (HOMO) and
the o* orbital (LUMO). As we have explained elsewhere,
there is a continuum of bonding between hypervalent
electron-rich three-center bonding—so called “secondary
interactions”—and donor—acceptor frontier orbital interac-
tion.’1 All these compounds are semiconducting, which
confirms Fermi gap opening caused by distortion of the
square sheet.

Square Te sheets carrying only 6.5 electrons per atom are
found in rare earth tritellurides. Although these sheets are
also subject to CDW distortion, the latter turns out to be only
a small amplitude sinusoidal modulation of the Te atomic
positions of the square sheet. The directly measured Fermi
surface of SmTe; demonstrates incomplete Fermi surface
nesting, as also evidenced by its metallic properties.

The square Te**~ sheets found in quaternary K,s;Ba ;-
AgTe, are strongly distorted into classical Tes?~ trimers, which
suggests that the electron count over 6.5 electrons per atom
causes square Te sheets to distort. Its semiconducting
behavior is in agreement with this conclusion. Classical Te;*~
trimer formation is also seen in defective square Tes*~ sheets,
found in the ARE;Te; series of compounds. Another struc-
tural motif obtained from distortion of the square sheet in
these compounds is an unusual infinite Te,’~ zig-zag chain.
The electron count in the zig-zag Te,> chains may be
rationalized by comparing local coordination of bent and
linear two-connected Te atoms to molecular analogues.

Our survey of square chalcogen sheets strongly suggests the
upper limit of 6.5 electrons per square sheet atom as a condition
of undistorted square sheet stability. More negatively charged
square chalcogen sheets oligomerize into both classical
species as well as nonclassical ones (zig-zag Te,”~ chains in
ARE;Teg). On the other hand no neutral or cationic square
chalcogen sheets are known, as expected from simple electro-
static and electronegativity arguments. Taking into account
the earlier discussion on square sheets of Sb and Group 4
elements, we believe that the stability zone for square sheet
electron counts lies between 5.5 and 6.5 electrons per atom.

13. Summary and Outlook

Heavy late main group elements tend to form unusual, if
sometimes geometrically simple, extended low-dimensional
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networks which just do not occur “normally” in molecules. In
this paper we have carried through a systematic analysis of
electron-rich multi-center extended structures aimed at
deriving unambiguous electron counting schemes for various
topologies. In particular we looked at a linear 1D chain (seven
electrons per atom), a square sheet (six electrons peratom), a
cubic lattice (five electrons per atom), an 1D ladder (six
electrons per atom), a 1D X; strip (20 electrons per three
atoms), and a number of more complex networks derived
from these building blocks. We also exemplified the use of
these building blocks in an aufbau of more complex structures.

We have also outlined the reasons and the possible path-
ways of the Peierls distortions for some of these networks.
Relatively weak s-p mixing for heavier main group elements,
caused by the contraction of less-screened s orbitals, is one of
the main reasons behind the existence of their low-dimen-
sional Peierls-undistorted metallic networks. In contrast, we
think that strong s-p mixing for light elements (for example N)
makes their Peierls distortion extremely favorable, thus
excluding, for instance, the possibility of the existence of
hypervalent networks of N.

Combined with classical Zintl-Klemm electron counting,
the hypervalent electron counting scheme derived here may
be successfully applied to understand the electronic structures
of a large variety of Sb compounds. Linear Sb*~ chains, square
Sb~ sheets, and other nonclassical networks are found in a
great number of seemingly unrelated Sb phases. Indeed, we
have yet to encounter an Sb phase which is in a clear violation
of the proposed electron counting scheme.

Actually, because of the fractional filling of hypervalent
bands in these networks, we expect the numbers of electrons
derived for each network to vary a little. Linear chains of
elements other than Sb also indicate that seven electrons per
linear chain atom is a preferred electron count; however, some
linear chains have electron count of 7.25 electrons per atom.
Interestingly enough, this simple linear chain electron count
serves successfully as a good starting point for rationalizing
the electronic structure of a nontrivial three-dimensional
network, that is found in the T1,SnTe; series of compounds.

We have also examined in great detail square sheets of
Group 4 and Group 6 elements. In the former case, the
preferred electron count is clearly six electrons per square
sheet atom. However, some square sheets of Group 4
elements are also realized with lesser electron counts of 5.5
and 5 electrons per atom, in which case secondary interactions
develop between “electronically unsaturated” square sheets
and other anionic subnetworks.

Six electrons per square sheet atom would render chalcogen
atoms neutral, not an advantage in an anionic atmosphere.
Consequently, one expects somewhat negative square chalc-
ogen sheets to be more stable. Most of the square chalcogen
sheets carrying seven electrons per square sheet atom are
severely distorted into classical dichalcogen pairs (for exam-
ple the Se,*~ herringbone network in LaSe,). The strong
tendency to form defect square sheets as well as the
persistence of CDW distortions also emphasizes the intrinsic
instability of square sheets carrying seven electrons per atom.
It appears that 6.5 electrons per chalcogen atom in the square
sheets, as found in rare earth tritellurides, are less distorted,
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although a small amplitude CDW formation is still observed.
It is quite remarkable that in an aufbau using both classical
and hypervalent building blocks, it has been possible to make
sense of bonding in nontrivial intermetallic compounds as
complex as La;;Mn,Sb;,. We hope that with the help of the
hypervalent building blocks discussed in this paper, many
other intermetallic compounds of heavy late main group
elements may be successfully studied as well.

14. Appendix I: Computational Details

All calculations were performed with the help of “Yet
Another extended Hiickel Molecular Orbital Package
(YAeHMOP)”, a program developed in our group by
G. Landrum.?* The standard atomic parameters were used
for Sb, N, and Zr. The parameters are listed in Table 8 with the
corresponding references.

Table 8. Extended Hiickel parameters. The { values are the exponents of
the Slater orbital basis set, the ¢; values the coefficients in a double-¢
expansion.

Atom  Orbital H;[eV] ¢ G (c2) Ref.

Sb Ss —18.8 2.323 [268]
5p —117 1999

N 2s —26.0 1.95 [77]
2p —134 1.95

Zr Ss 987 1817 [269]
S5p —-6.76  1.776
4d —11.18 3835 0.6210 1.505 0.5769

Addendum

While this manuscript was in press we learned that Stowe
had found that TITe undergoes a rather peculiar Pierls
distortion at 172 K, where only half of the chains with
“handles” are affected.’’ The pairing distortion indicates the
preservation of the band structure patterns of the underlying
simple linear chain in the composite chain. Stowe has also
offered direct structural evidence of the square Te sheet
distortion in LaTe, and PrTe,.?”!l This observation is consis-
tent with the instability of the electron count of seven
electrons per atom in a square sheet, as advocated throughout
this review.
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