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The many-body physics of hydrogen bond formation in alpha-helices of globular proteins was investi-
gated using a simple physics-based model. Specifically, a context–sensitive hydrogen bond potential,
which depends on residue identity and degree of solvent exposure, was used in the framework of the
Associated Memory Hamiltonian codes developed previously but without using local-sequence structure
matches (‘‘memories”). Molecular dynamics simulations employing the energy function using the con-
text–sensitive hydrogen bond potential alone (the ‘‘amnesiac” model) were used to generate low energy
structures for three alpha-helical test proteins. The resulting structures were compared to both the X-ray
crystal structures of the test proteins and the results obtained using the full Associated Memory Hamil-
tonian previously used. Results show that the amnesiac Hamiltonian was able to generate structures with
reasonably high structural similarity (Q � 0.4) to that of the native protein but only with the use of pre-
dicted secondary structure information encoding local steric signals. Low energy structures obtained
using the amnesiac Hamiltonian without any a priori secondary structure information had considerably
less similarity to the native protein structures (Q � 0.3). Both sets of results utilizing the amnesiac Ham-
iltonian are poorer than when local-sequence structure matches are used.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The formation of hydrogen bonds in the backbone has long been
recognized as a key aspect in stabilizing the native structures of
globular proteins. This idea was the basis of the early predictions
about protein structure made by Pauling and Kauzmann which
pre-dated crystal structure determination [1,2]. Hydrogen bonds
between polar amine and carboxyl groups alleviate the desolvation
penalty of those groups as they become buried in protein’s native
structure. This, in turn, gives rise to the familiar protein secondary
structures, such as alpha-helices and beta-sheets. Furthermore,
formation of the secondary structures in the molten globular state
substantially diminishes the search space for the folded state,
accelerating the folding kinetics [3–5]. Despite the clear impor-
tance of hydrogen bonding in protein folding thermodynamics
and kinetics, and the enormous body of prior work in this area, a
significant number of outstanding questions remain about the pre-
cise energetics of hydrogen bond formation among various pairs of
amino-acid residues in the context of the local environment (e.g.,
ll rights reserved.

), pwolynes@ucsd.edu (P.G.
whether there is a high density of neighboring residues or signifi-
cant exposure to solvent.) Certain aspects of hydrogen bond ener-
getics, owing to the solvent involvement should lead to non-trivial
cooperative or anti-cooperative effects. One therefore wonders
whether encoding the physics of hydrogen bond formation upon
collapse might actually be sufficient to predict protein structure.
In this work, we probe the many-body physics of hydrogen bond
formation in alpha-helices of globular proteins by introducing cor-
responding context–sensitive hydrogen bond potentials as addi-
tional terms to a protein structure prediction Hamiltonian
already developed in our group and evaluating the performance
of this simple physics model.

Protein structure prediction potentials that incorporate knowl-
edge of local-sequence structure patterns have become remarkably
successful over the last decade. There are a number of features
which are common to the potentials used by various groups. In
addition to chain connectivity, usually both local and tertiary inter-
actions enter as distinct terms in these Hamiltonians. In prior work
by Saven and Wolynes, it was shown that local and tertiary inter-
actions likely contribute nearly equally to the overall specificity of
native folds [6]. There are a number of ways by which local inter-
actions are treated in structure prediction Hamiltonians. In both
fragment assembly-like methods [7,8] and the Associated Memory
Hamiltonian [9–12], local structural signals are inferred by finding
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distant or close sequence similarity to corresponding local seg-
ments of many other proteins in the structural database. In recent
developments of the Associated Memory Hamiltonian, called the
AMH, memory based guidance of local structure formation is sup-
plemented by direct and water-mediated interactions which are
burial-specific [13,14]. We call this the AMW model. Interestingly,
although no direct hydrogen bonding potential was included in the
alpha-helical AMW prediction code, highly native-like alpha-heli-
ces form in successful prediction runs, driven by the secondary
structure bias from the memory proteins [13]. In this work, con-
versely we turn off these memories, but instead add direct
many-body hydrogen bonding potential to the resulting mem-
ory-less (‘‘amnesiac”) Hamiltonian. We colloquially use the latter
phrase to distinguish and compare the present results with the al-
pha-helical AMW results published previously.

Collapse of a random coil to a molten globule has a number of
important consequences for the thermodynamics and kinetics of
protein folding. In particular, local steric constraints and excluded
volume interactions reduce configurational entropy and thus facil-
itate the formation of flickering alpha-helical segments which be-
come partially aligned, reminiscent of a liquid crystal [4]. When
local structural signals are added for either helix formation, helix
capping, or a turn formation, via specific local-sequence informa-
tion, the resulting bias towards native-like secondary structures
contributes to the minimal frustration of the folded conformation
and significantly diminishes the entropy of the globule, which
allows for more efficient folding kinetics [6]. As explained in Sec-
tion 2, some of these local signals are included in the alpha-helical
hydrogen bonding term of the amnesiac Hamiltonian, by modu-
lating the specific hydrogen bonding strength depending on the
specific amino-acid residue pair. This approach could also poten-
tially be used to model some of the helix capping effects involv-
ing side chain-backbone hydrogen bonds. On the other hand, the
present hydrogen bonding potential is non-pairwise only insofar
as local polypeptide chain density is concerned, while additional
cooperative effects may potentially also be important. Explicit
turn signals, on the other hand, are also completely absent in
the amnesiac Hamiltonian we study here. We address the ques-
tion of relative importance of these effects in the present study,
by comparing the amnesiac Hamiltonian results with the AMW
calculations.

Another interesting question addressed in the present work is
the effect of modulating the strength of hydrogen bonding based
on burial. According to the original Kauzmann arguments, when
amine and carboxyl groups are well solvated, there should be little
driving force for hydrogen bond formation. Upon desolvation in the
protein core or partial desolvation within an alpha-helix, the ener-
getics of hydrogen bond formation becomes important. Since local
polypeptide chain density and hydrogen bond formation become
coupled under this scenario, this is expected to introduce addi-
tional cooperativity into the folding process. In the amnesiac Ham-
iltonian, the alpha-helical hydrogen bonding term is modulated by
the local surrounding density, so we can independently vary the
strengths of core and surface hydrogen bonds. While we keep the
core hydrogen bonding always stabilizing, we compare the quality
of structure prediction runs for various proteins as the surface
hydrogen bonding energies are either energetically favorable, neu-
tral or unfavorable.

In summary, in this work we have developed a many-body al-
pha-helical hydrogen bonding potential in the context of a struc-
ture prediction potential. We have compared folding runs and
free energy profiles obtained from the amnesiac Hamiltonian with
AMW results, where in the latter protein memories are used to
guide local alpha-helical and turn formation processes. This com-
parison indicates that the performance of the new amnesiac Ham-
iltonian, when combined with secondary structure prediction bias,
is although not at par with AMW, which includes complex se-
quence-specific local interactions, still rather predictive of native-
like conformations but that hydrogen bonding and water-mediated
interactions alone are insufficient to predict protein structure.
These findings are somewhat unexpected, suggesting that intro-
ducing additional physical interactions may allow one to some-
what simplify current knowledge-based structure prediction
Hamiltonians. This may consequently allow application of this po-
tential to polypeptide chains where truly novel structural patterns
exist locally, for example to study conformational dynamics of
intrinsically-disordered proteins.
2. Methods

The infrastructure of our structure prediction program is based
on the Associative Memory Hamiltonian with water mediation
(AMW) [13]. There are four components in the Hamiltonian: a
backbone term, a water-mediated term for medium/long range
interactions (sequence distance larger than 8) and two hydrogen
bonding potential terms.

E0 ¼ Ebackbone þ Emed-long þ Ehelical þ EKauzmann: ð1Þ

In our Hamiltonian, the atoms Ca, Cb and O are explicitly repre-
sented with chain connectivity. The backbone angles are controlled
by a Ramachandran potential and chirality potential. Excluded vol-
ume is treated for the explicitly represented atoms in the system.
The exposure or buriedness of any residue is calibrated based on
the residue density surrounding it, which is calculated on-the-fly.
The medium/long range interactions between residues depend on
the residue density surrounding the interaction as well. Here we
present the details of helical hydrogen bond potential and how
water mediation is integrated into the potential.

We focus on implementing the water mediation into the hydro-
gen bond potential that controls the formation of helices. As a re-
sult, the exposure or degree of burial of the residue is used to
characterize the environment of the forming hydrogen bond as
was done earlier in a study by Takada without water-mediated
interactions [15,16]. The memory term used in previous studies
[13] is replaced by the water-mediated helical potential in our
Hamiltonian, which we denote as the ‘‘amnesiac” Hamiltonian.

We use the following hydrogen bonding potential to control
helical formation:

Ehelical ¼ cp � Vi;iþ4
helicalðrON; rOHÞ � rði; iþ 4Þ ð2Þ

where Ehelical is our helical hydrogen bond potential. And
r(i,i + 4) = Hburial(qi) � Hburial(qi+4) is the burial profile term of the
pairwise interaction. q is the local density of each residue calculated
in the water potential.

Vi;iþ4
helicalðrON; rOHÞ ¼ �ðf ðiÞ þ f ðiþ 4ÞÞ
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The term f(i) describes the probability of finding the corresponding
residue type in helices from the protein database [17]. The hydro-
gen bond stability is proportional to the sum of helical propensities
of the two interacting residues.

The overall energy scale of helical hydrogen bond potential is
denoted by cp, which has been optimized using training proteins
based on the minimal frustration principle [18].

The above potential directs the hydrogen bonding between dif-
ferent pairs of residues when both are buried. As residues become
exposed, the free energy gain due to hydrogen bond formation will
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Fig. 1. Optimization results of the overall energy scaling parameter for Ehelical.

Fig. 2. Crystal structure of 1UTG protein with buried (red) and exposed (blue)
hydrogen bonds colored according to the amnesiac potential.
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decrease to reflect the fact that water molecules can also
participate in hydrogen bond formation. For cw < 0, this free energy
for intra-helical hydrogen bond formation can become negative
(anti-helical), which we dub as the ‘‘Kauzmann effect”. The follow-
ing potential is given:

EKauzmann ¼ cw � Vi;iþ4
helicalðrON; rOHÞ � ð1� rði; iþ 4ÞÞ ð4Þ

where Vhelical was described by (3).
Seven alpha-helical proteins were used for training the new

parameters. In this procedure, we first simply set cp and cw as
2.5 and �2.5 respectively. Simulations of seven training proteins
were performed to generate ensembles of native-like structures
and protein structures in the molten-globule state using the amne-
siac Hamiltonian both with and without a secondary structure
bias. Before the simulations were started, a secondary structure
prediction for each protein was obtained [19]. For simulations
employing a secondary structure bias, the results of the secondary
structure predictions were used to bias the Ramachandran poten-
tial in favor of the predicted secondary structure. The cumulant
expansion of free energy with respect to parameter cp and cw

was performed. The optimal value is chosen at the position where
the free energy gap between native-like structure ensemble and
molten-globule structure ensemble is maximized. Based on the
optimization result, cp is approximately 2.0 and cw is �1.0 (see
Fig. 1).

In the force calculations, the derivative of the potential is calcu-
lated for every explicit atom involved in the potential. The deriva-
tive follows the chain rule calculation in the hydrogen bond
potential. The forces are transferred from the implicit nitrogen
atom to the explicit atoms Ca, Cb and Ox in the planar scaffold of
the amino acid. For the Hburial terms, the forces will be applied to
the relevant residues in proximity. Therefore our helical potential
is a non-additive potential, instead of a simple two-body potential.

3. Results and discussion

Molecular dynamics annealing simulations were performed
using the amnesiac Hamiltonian to generate low energy conforma-
tions of target proteins. Three relatively small alpha-helical test
proteins were used to test the performance of the amnesiac Ham-
iltonian: amino-terminal domain of phage 434 repressor, uteroglo-
bin, and vitamin D-dependent calcium-binding protein (PDB
accession ID numbers 1R69, 1UTG and 3ICB, respectively). For
comparison, molecular dynamics annealing simulations were per-
formed on all three targets using the standard AMW Hamiltonian,
a knowledge-based potential that has previously been shown to
predict structures with high structural similarity to the native fold
[13]. In this case, of course, no homologs were included in the
memory set. To illustrate how the amnesiac Hamiltonian catego-
rizes buried and exposed hydrogen bonds, Fig. 2 shows the native
structure of 1UTG protein with hydrogen bonds colored according
to the amnesiac potential. The exposed and buried hydrogen bonds
depicted in Fig. 2 as determined by the amnesiac potential are con-
sistent with our expectations: all exposed hydrogen bonds are lim-
ited to alpha-helical segments facing out from the protein interior
or located near loops, while buried hydrogen bonds are mostly
confined to alpha-helical segments located near the protein’s
interior.

For each target, two separate sets of 14 annealing simulations
with the amnesiac model were performed in which one set uses
a secondary structure bias and the other does not. The best Q score
for each run is reported in Fig. 3. The Q score is defined as
2Ri<j�2 exp½�ðrij � rN

ij Þ
2
=2r2

ij�=ðN � 1ÞðN � 2Þ, Q serves as a quantita-
tive measure for all pairwise distances within a given structure
[20]. For example, a structure with Q = 1.0 corresponds to the na-
tive structure, while a structure with a Q score <0.2 bears little
resemblance to the native form. The Z score calculated using the
combinatorial extension (CE) algorithm [21] was used as another
similarity measure with which to compare predicted structures
to their crystallographic structures. This score identifies general
topological similarities irrespective of protein sequence. For exam-
ple, Z scores larger than 4.0 indicate strong similarities between
protein structures.

The results in Fig. 3 were obtained using values of cp = 2.0 and
cw = �1.0 for buried and exposed hydrogen bonds, respectively.
These values should strongly favor the formation of buried hydro-
gen bonds and discourage formation of exposed intra-helical
hydrogen bonds. The best Q score obtained for simulations using
a secondary structure bias are substantially improved over simula-
tions carried out without a secondary structure bias. While this is
not surprising, it is interesting to observe the degree of improve-
ment in the prediction. For each target protein, the best overall Q
scores for simulations using a secondary structure bias approaches
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Fig. 3. Best Q sampled in 14 annealing simulations for proteins 1UTG (black squares), 1R69 (red stars) and 3ICB (blue circles) in descending order for simulations using a
secondary structure bias (left) and simulations without using a secondary structure bias (right).

Fig. 4. Left: predicted structure from an annealing simulation using a secondary
structure bias for protein 1UTG with Q = 0.468; CE: Z = 4.1 (blue) overlaid onto the
X-ray crystal structure of protein 1UTG (red). Right: predicted structure from an
annealing simulation without using a secondary structure bias for protein 1UTG
with Q = 0.305; CE: Z = 3.1 (blue) overlaid onto the X-ray crystal structure of protein
1UTG (red).

Fig. 5. Left: predicted structure from an annealing simulation using a secondary
structure bias for protein 1R69 with Q = 0.344; CE: Z = 3.3 (blue) overlaid onto the
X-ray crystal structure of protein 1R69 (red). Right: predicted structure from an
annealing simulation without using a secondary structure bias for protein 1R69
with Q = 0.333; CE: Z = 2.6 (blue) overlaid onto the X-ray crystal structure of protein
1R69 (red).

Fig. 6. Left: predicted structure from an annealing simulation using a secondary
structure bias for protein 3ICB with Q = 0.344; CE: Z = 3.5 (blue) overlaid onto the X-
ray crystal structure of protein 3ICB (red). Right: predicted structure from an
annealing simulation without using a secondary structure bias for protein 3ICB with
Q = 0.343; CE: Z = 3.1 (blue) overlaid onto the X-ray crystal structure of protein 3ICB
(red).
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0.4, which is typically characterized by a better than 6 Å RMSD fit
to the native structure. In contrast, the best overall Q scores found
for simulations that do not use a secondary structure bias do not
exceed 0.35. This trend is mirrored by the Z scores calculated for
each of the structures giving the best Q score. The highest Z score
for simulations biased by their predicted secondary structure was
4.1, while the highest value for the unbiased simulations was
merely 3.1.

The structures obtained from annealing simulations with and
without the secondary structure bias for protein 1UTG are dis-
played in Fig. 4 (corresponding contact maps can be found in the
Appendix, Figs. A10–A12). The predicted structure obtained for
protein 1UTG from simulations using the secondary structure bias
represents the best predicted structure generated by all simula-
tions employing the amnesiac potential. Comparison with the X-
ray crystal structure shows that structural similarity is very high
with some discrepancy between the packing of one of the helical
segments. The best predicted structure obtained for protein
1UTG from simulations without the secondary structure bias ap-
pears quite different from the native structure due to the lack of
secondary structural elements. However, the contact map (see
Appendix) illustrates that a reasonable number of native pairwise
contacts are present in this structure, which indicates that the
amnesiac potential is able to recapitulate some of the structural
features of the protein even without a secondary structure bias.

Results obtained for proteins 1R69 and 3ICB (Figs. 5 and 6) mir-
ror those discussed for 1UTG above. Again, the best predicted
structures for each protein were obtained from simulations
employing the secondary structure bias. A brief visual inspection
of the left side of Figs. 5 and 6 shows that the overall similarity be-
tween the predicted structure and that of the X-ray structure bias
was high, with some mis-packing of secondary structure elements
(particularly for protein 3ICB). The best predicted structure for pro-
teins 1R69 and 3ICB for simulations without a secondary structure
bias, shown on the right side of Figs. 5 and 6, exhibit poorly devel-
oped secondary structure. The contact map for protein 1R69 (see
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Fig. 7. Best Q sampled using AMW Hamiltonian in 14 annealing simulations for proteins 1UTG (black squares), 1R69 (red stars) and 3ICB (blue circles) in descending order for
simulations using a secondary structure bias (left) and for simulations without using a secondary structure bias (right).
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Fig. 8. Best Q sampled in 10 annealing simulations for protein 1UTG with varying values of the cw: 0.0 (black squares), 1.0 (red stars), �3.0 (blue circles) and 3.0 (magenta
triangles) in descending order for simulations using a secondary structure bias (left) and simulations without using a secondary structure bias (right).
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Fig. 9. Comparison of free energy calculations for protein 1UTG using the amnesiac Hamiltonian at T = 0.7 using varying values of cw: �1.0 (black squares), 3.0 (red stars),
�3.0 (blue circles) and the AMW Hamiltonian (pink diamonds) for simulations using a secondary structure bias (left) and for simulations without using a secondary structure
bias (right).

88 V. Oklejas et al. / Methods 52 (2010) 84–90
Appendix) indicates reasonably large regions where native con-
tacts are maintained, while the number native contacts shown in
the contact map for protein 3ICB is quite low.
Fig. 7 shows the best overall Q scores for annealing simulations
using the AMW Hamiltonian with and without a secondary struc-
ture bias. In contrast to the results obtained using the amnesiac
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Hamiltonian, the addition of a secondary structure bias does not
lead to any substantial improvement in the prediction results. This
can be attributed to the fact that associative memory potential
term already biases the secondary structure according to its align-
ment with a set of non-homologous memory proteins. The best Q
scores measured for the AMW annealing simulations are consider-
ably better than those achieved with amnesiac Hamiltonian.

Fig. 8 displays the best Q sampled in 10 annealing simulations
for protein 1UTG using varying values of the Pauling–Kauzmann
coefficient for exposed hydrogen bonds (cw) to investigate the
effect of favoring or disfavoring exposed hydrogen bonds on
structure prediction. The results for simulations employing a sec-
ondary structure bias clearly exhibit a dependence on the value
of this parameter, while simulations without a secondary structure
bias exhibit a weaker dependence. One possible explanation for
this trend could be that the secondary structure bias influences
the residue density, which in turn influences the Ehelical, which de-
pends on local residue density. In both cases, larger positive values
of cw appear to result in predicted structures with higher Q scores
and suggests that annealing simulations using larger positive val-
ues of cw would have yielded structures with higher structural sim-
ilarity that those reported in Fig. 3.

To further understand the role of exposed hydrogen bonds in
protein folding, free energy profiles for 1UTG were calculated as
a function of Q score using umbrella sampling along the reaction
coordinate. Umbrella sampling was carried out with the Q score
bias potential Vi(Q) = 5000 � (Q � Qi)4, where Qi = 0.15, 0.20, 0.25,
0.30,. . .,0.95. Free energy plots as a function of Q score were calcu-
lated using the weighted histogram analysis method [22]. Fig. 9
shows free energy profiles calculated from simulations using cw

values of 3.0, 0.0 and �3.0 and both with and without the second-
ary structure bias. The trends observed in the free energy calcula-
tions are consistent with the trends observed in the annealing
simulation results. For those simulations using a secondary struc-
ture bias, the free energy curve minima are shifted to larger values
of Q compared to that of simulations without the secondary struc-
ture bias. Interestingly, the free energy minima for simulations
using cw values of 0.0 and �3.0 both occur at Q � 0.30, while for
simulations using a cw value of 3.0 the free energy minimum
moves to a noticeably higher Q score (Q > 0.4). In contrast, the free
energy vs. Q plots for corresponding simulations without the sec-
ondary structure bias all exhibit minima at Q � 0.23. This low value
is also consistent with results observed in the annealing simula-
tions. The results in Fig. 9 suggest that the use of the secondary
structure bias strongly influences the Ehelical term of the amnesiac
potential and, in turn, its ability to sample structures more similar
Fig. A10. Left: contact map for a predicted structure from an annealing simulatio
structure from an annealing simulation without using a secondary structure bias
n usin
for pro
to the native state. These results also suggest that the role of intra-
helical exposed hydrogen bonds plays an important role in stabiliz-
ing the native protein conformation.

4. Conclusions

We have investigated the ability of a coarse-grained microphys-
ics-based model to predict the structures of globular proteins. The
microphysics incorporated in the simplest ‘‘amnesiac” model
emphasizes the importance of backbone buried hydrogen bond
and sequence dependent compaction with the inclusion of
water-mediated interactions. While this model captures many of
the common themes of protein structures in its predictions, it per-
forms considerably more poorly than schemes that also incorpo-
rate local in sequence interactions, like the corresponding
associative memory Hamiltonian. Surprisingly, adding a rather
simple local secondary structure potential term already improves
performance considerably, although not to the level of the full
AMW method or the most powerful hybrid of AMH and fragment
assembly. The amplification of local signals, by a roughly organized
collapse, predicted by Saven and Wolynes’ analytical theory [6]
seems to be at the core of this performance.

The value of the current amnesiac code is that it is applicable to
the prediction of alpha-helical proteins where any local structural
signals have a distinct origin from those typically seen in globular
proteins. Examples include ‘‘intrinsically-disordered” proteins,
which have become increasingly recognized for their biological sig-
nificance. It will also be of interest to use the amnesiac code to exam-
ine and predict membrane protein structures, many of which exhibit
only alpha-helical structure, where again the main organizing
microscopic forces should be captured by the amnesiac model.
Extension of this model to include proteins with alpha-beta and
all-beta secondary structure will require a more complicated poten-
tial for hydrogen bonding, as discussed in [14], and is a problem for
the future. Refinement of the hydrogen bonding potential in the
amnesiac model to allow more extensive hydrogen bonding will al-
low us to investigate a broader range of ‘‘intrinsically-disordered”
proteins, as well as explore the possibility of whether these proteins
adopt fluctuating super-secondary structures not yet observed.
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tein 1UTG.



Fig. A11. Left: contact map for a predicted structure from an annealing simulation using a secondary structure bias for protein 1R69. Right: contact map for a predicted
structure from an annealing simulation without using a secondary structure bias for protein 1R69.

Fig. A12. Left: contact map for a predicted structure from an annealing simulation using a secondary structure bias for protein 3ICB. Right: contact map for a predicted
structure from an annealing simulation without using a secondary structure bias for protein 3ICB.
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