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a b s t r a c t

Recent developments of fluorescence labeling and highly advanced microscopy techniques have

enabled observations of activities of biosignaling molecules in living cells. The high spatial and temporal

resolutions of these video microscopy experiments allow detection of fluorescence fluctuations at the

timescales approaching those of enzymatic reactions. Such fluorescence fluctuation patterns may

contain information about the complex reaction–diffusion system driving the dynamics of the labeled

molecule. Here, we have developed a method of identifying the reaction–diffusion system of

fluorescently labeled signaling molecules in the cell, by combining spatio-temporal correlation

function analysis of fluctuating fluorescent patterns, stochastic reaction–diffusion simulations, and an

iterative system identification technique using a simulated annealing algorithm. In this report, we

discuss the validity and usability of spatio-temporal correlation functions in characterizing the

reaction–diffusion dynamics of biomolecules, and demonstrate application of our reaction–diffusion

system identification method to a simple conceptual model for small GTPase activation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Cell signaling networks control a wide range of physiological
processes, including development, immunological response, pro-
grammed cell death, and cancer transformation. However, it is
often difficult to uncover protein interactions behind many
biochemical signaling networks and elucidate the corresponding
kinetic mechanisms. With recent technological advances, several
systems biological approaches have been suggested to tackle
this problem, including such techniques as flow cytometry
(Chen et al., 2008), RNA interference (Bakal et al., 2008), high-
throughput mass spectroscopy (Yu et al., 2008) and other
biochemical methods (Janes et al., 2005; Barrios-Rodiles et al.,
2005).

In most of these methods, however, data are collected not at a
single cell level but from a population of cells (i.e. unresolved
spatially), at a low temporal resolution, where the experiment
lasts for minutes to hours. On the other hand, the individual
kinetic rates of biosignaling networks are often in a sub-second
range or faster, since the elementary processes of intracellular
signaling typically involve either diffusion-limited association or
fast enzymatic reactions. Furthermore, increasing evidences
ll rights reserved.
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points to the importance of noise in signal transduction processes,
which, in turn, manifests itself in cell-to-cell variability of signal
response within a mono-clonal cell population (Cai et al., 2006;
Chang et al., 2008; Choi et al., 2008). Theoretical studies also
predict that a variety of consequences may emerge as a result of
noisy signaling (Kaern et al., 2005; Monine and Haugh, 2005;
Walczak et al., 2005; Lu et al., 2007; Artyomov et al., 2007;
Locasale et al., 2007; Acar et al., 2008), including stochastic
resonance (Lan and Papoian, 2007a) and strongly nonlinear effects
(Lan and Papoian, 2007b, 2006a; Lan et al., 2006).

Most of recent research on biological noise focused on
studying gene expression dynamics (Mettetal et al., 2006). In
such systems, the noise is almost always regarded as spatially
homogeneous: kinetics of transcription and translation (the latter
including a step by step synthesis of a protein) in gene expression
dynamics is slow enough that relatively fast diffusion renders the
cell well-stirred. Since it has been shown that stochastic chemical
kinetics can be exactly expressed in the language of quantum field
theory (QFT) (Mattis and Glasser, 1998; Walczak et al., 2005; Lan
et al., 2006), a well-stirred process would correspond to a zero-
dimensional (0D) QFT problem. On the other hand, cell signaling
kinetics, as found in cell motility regulation and chemotactic
sensing, is usually fast, based on enzymatically driven reactions of
phosphorylation, ATP or GTP hydrolysis, and also protein binding,
where the latter kinetics is often diffusion limited. Therefore, spatial
heterogeneity cannot be ignored in cellular information processing
by biochemical signaling networks. When accompanied by noise,
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these processes may be considered equivalent to 3D QFT, difficult
to solve either analytically or numerically (Mattis and Glasser,
1998; Lan and Papoian, 2008), compared to the 0D case. Thus, in
order to fully characterize spatially heterogeneous fluctuations in
rapid biosignaling networks, very high resolution measurements
and appropriate analysis methods are of great importance,
significantly different from tools used to study well-mixed
chemical reaction networks, in particular gene expression
dynamics (Dunlop et al., 2008; Cox et al., 2008; Warmflash and
Dinner, 2008).

Fluorescence video microscopy experiments address some of
these challenges by allowing one to observe individual living cells
with high spatial resolution, where the diffraction limit of visible
light is few hundred nanometers, and at high temporal resolution,
with video frame rates up to � 33 ms (Petty, 2007; Inoué and
Spring, 1997). Thus, the temporal resolution limit of the fluores-
cence video microscopy is close to the timescales of many
enzymatic reactions (Zhang et al., 2004). Furthermore, microscopy
has another unique advantage that it can observe the fluorescently
labeled molecules in the cell simultaneously with the cell’s
morphological changes. Such unique advantages of microscopy
are perhaps best illustrated in the study of molecular motors, in
which the individual steps (on the order of nanometers) of single
motor proteins are directly observed (at a sub-second temporal
resolution) (Sakamoto et al., 2008). These measurements, as well as
others using such techniques as laser tweezers and piezoelectric
nano-actuators (Svoboda et al., 1994; Kojima et al., 1997), have shed
light on the highly fluctuating nature of molecular motor steps
because of an intrinsically noisy microscopic environment. This
important aspect in the work of biological nano-machines is also
being thoroughly examined theoretically and computationally,
including a spatially resolved master equation approach (Das and
Kolomeisky, 2008) and a consideration based on the fluctuation–
dissipation theorem (Harada and Sasa, 2007). Furthermore,
fluorescent biomarkers have remarkably advanced in the last
decade (Giepmans et al., 2006). Especially, Förster resonance energy
transfer (FRET, Förster, 1959) probes enable experimentalists to
monitor essential activities of signaling proteins, such as conforma-
tional changes and binding to their substrates. Many FRET
biosensors for key biosignaling molecules have been developed so
far, including heterotrimeric G-proteins (Janetopoulos et al., 2001;
Bünemann et al., 2003), small GTPases (Pertz et al., 2006; Kraynov
et al., 2000; Nalbant et al., 2004; Mochizuki et al., 2001), kinases/
phosphatases (Lu et al., 2008; Zhang et al., 2001; Sasaki et al., 2003;
Violin et al., 2003), and other important signaling enzymes
and small molecules, such as PLC, PIPs, Ca2+ and cAMP (van der
Wal et al., 2001; Parent et al., 1998; Miyawaki et al., 1997; Adams
et al., 1991). Thus, nowadays, many key signaling processes in
the cell may be monitored via specially designed fluorescent
biosensors.

The combination of fluorescence video microscopy with newly
developed FRET biosensors allows to capture fluctuating spatio-
temporal fluorescence patterns, which, in turn, encode informa-
tion about the underlying microscopic signaling dynamics.
Diffusion of molecules in a cell results in specific spatial
fluctuations at the microscopic scale. Also, since enzymes work
stochastically at the single molecular levels (Lu et al., 1998), the
interconversion between FRET and non-FRET states also produces
fluctuations at the enzymatic reaction timescales. Thus, the
biosignaling processes at these time and length scales may be
regarded as a stochastic reaction–diffusion (RD) system. If indeed
the observed fluorescence fluctuations reflect the structure and
dynamics of this RD system (Petrášek and Schwille, 2008), it may
be possible to extract (reverse-engineer) some architectural links
and all kinetic rates of the underlying signaling network. Thus,
how to analyze the observed fluorescence fluctuation patterns to
identify the corresponding RD system is a problem of great
practical importance.

Correlation functions are effective for analyzing noisy fluctua-
tions. For example, in fluorescence correlation spectroscopy (FCS),
one analyzes the temporal correlation function of the observed
fluorescence fluctuations. FCS has been successfully applied to
investigate biomolecules in living cells, allowing to obtain such
information as diffusion coefficients (Wawrezinieck et al., 2005)
and chemical reaction rates (Hegener et al., 2004). Similarly, a
correlation analysis can be applied to video microscopy data.
Although video recording does not achieve as good a time
resolution as FCS does (Burkhardt and Schwille, 2006), video data
have an advantage that they contain spatial information in
addition to the time-series information, allowing one to perform
a spatio-temporal correlation analysis. Wiseman and colleagues
have developed spatio-temporal image correlation spectroscopy
(STICS) (Hebert et al., 2005) and k-space image correlation
spectroscopy (kICS) (Kolin et al., 2006) to analyze the dynamics
of fluorescent particles on the cell membranes. They showed that
the spatio-temporal correlation analyses are advantageous over
FCS in that the fluctuations due to diffusion and due to reactions
are clearly distinguishable, because they appear distinctively in
the spatial and temporal correlation functions. This made it
possible to analyze RD systems with nonexponential decay, such
as the blinking dynamics of quantum dots (Bachir et al., 2008).

Although most of the previous spatio-temporal correlation
analyses were performed on video microscopy images of
fluorescent particles or speckles in which individual motions of
the molecules are recognizable, this analysis method may also be
applied to continuous fluorescence images in which individual
fluorescent particles are not resolved, including video microscopy
data obtained by in vivo FRET-biosensor imaging (as illustrated in
Fig. 6), as long as the fluorescence fluctuations are detectable. The
fluctuations in such FRET imaging may contain valuable informa-
tion on the dynamics and mechanisms of biosignaling, since
the high-FRET and low-FRET states of FRET biosensors represent
the active/inactive states of the probed proteins or indicate the
binding/unbinding of their binding partners. In the previous
works, the fluorescence fluctuations were analyzed for relatively
simple reactions by fitting their correlation functions to theore-
tical curves. However, this approach becomes intractable if the RD
system is non-trivial or not fully characterized.

In this work, we have devised a RD system identification
approach as an alternative to the theoretical fitting described above.
In this approach, the spatio-temporal fluctuation patterns of
biosignaling RD systems are simulated using our in-house stochas-
tic RD simulation software, and the obtained patterns are
quantitatively characterized using spatio-temporal correlation
functions (STCFs). To find the best computational model that can
reproduce the experimentally observed spatio-temporal FRET signal
fluctuation patterns, we used an iterative optimization technique,
based on the simulated annealing (SA) algorithm (Kirkpatrick et al.,
1983; Erban et al., 2007), allowing us to obtain the model parameter
values for complicated RD models, which could not be treated
analytically. We are not aware of any prior technique, neither
analytical nor numerical, where spatial correlations may be used in
addition to temporal correlations to extract kinetic parameters in an
arbitrary chemical reaction network.
2. Methods

2.1. Stochastic reaction–diffusion simulations

A two-dimensional stochastic RD simulator was implemented
(Fig. 1) to perform RD simulations that take into account the
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Fig. 1. A conceptual drawing of the geometric scheme for our stochastic reaction–

diffusion simulation program is shown. The two-dimensional square geometry is

composed of small boxes. The ceiling of the box is the cell membrane. The small

GTPases may attach to the membrane or detach.

Fig. 2. The Rho small GTPase reaction–diffusion model that we used in our

stochastic reaction–diffusion simulations is conceptually sketched. See Table 1 for

the parameter values.
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discreteness in the particle number fluctuations (the fluctuations
in the number of molecules due to reactions and diffusion). These
fluctuations are fundamentally present in chemically reacting
systems, and play a major role when there are only a few
molecules present in the reacting volume, which is a common
scenario in cell signaling. Our simulation program solves a
spatially embedded chemical master equation (SECME)
(Isaacson, 2008; Lan and Papoian, 2008; Zhuravlev and Papoian,
2009), using the Gillespie (1977) algorithm. The original Gillespie
algorithm does not take diffusion into consideration, since the
algorithm assumes that chemical reactions take place in a very
small volume in which diffusion of the molecules can be ignored
(thus, the molecules are assumed to be well-mixed). In our
implementation, a separate Gillespie simulator is used within
each ‘‘voxel’’ with the side l¼ 1mm, and diffusion of molecules is
represented by stochastic ‘‘hopping’’ of molecules from one voxel
to the adjacent one, with the rate t�1

D . tD is the characteristic
diffusion time of the molecule, which is related to the diffusion
coefficient D by D¼ l2t�1

D (van Kampen, 1992).
The reaction–diffusion system is placed in a 2D lattice of size

n�m. In this study, a square lattice 20�20 was used, which
correspond to a 20� 20mm2 slab. The distribution pattern of a
molecular species A in this 2D slab geometry can be described by
an n�m matrix A. A matrix element AijAN represents the
number of molecules at the voxel at (i,j). Let us define a matrix 1ij,
having zeroes everywhere except for the matrix element at ij (the
corresponding element being 1), such that A+1ij denotes an
increment of a molecule A in the voxel at (i,j), and A�1ij, denotes
the corresponding decrement (reminiscent of the action of ladder
operators in quantum mechanics).
2.1.1. Rho small GTPase reaction–diffusion model

In what follows below, we show the SECME for our small
GTPase Rho reaction–diffusion model (Fig. 2). A Rho molecule
may exist either in a membrane-bound or cytosolic state since
this small GTPase has a lipid post-translational modification (Lu
et al., 1998). On the other hand, the activation and inactivation of
Rho are simplified to be first-order reversible forward and
backward reactions, although these processes in reality may be
controlled by many regulator molecules (Jaffe and Hall, 2005).

Let P(m, m%, c, c%, t), denote the probability that the Rho
molecules in the four different states are distributed in the 2D
geometry in a particular pattern as described by m, m%, c, c% at
time t. Here mij denotes the number of membrane bound Rho at
2D lattice site ij, cij denotes the number of cytosolic Rho at 2D
lattice site ij, and star superscripts indicate the corresponding
activated forms. Then P obeys the following SECME:

dP

dt
¼ ðM̂þD̂ÞP ð1Þ

where M̂ and D̂ are the reaction and diffusion operators,
respectively.

The reaction equations for our Rho model are the activation/
inactivation processes,

M ðRhomemÞ $
kact

kinact

M%

ðRho�memÞ

C ðRhocytÞ $
kact

kinact

C%

ðRho�cytÞ

and the association/dissociation reactions to the inner leaflet of
the cytoplasmic membrane,

C%

ðRho�cytÞ $
kon

koff

M%

ðRho�memÞ

C ðRhocytÞ $
kon

koff

M ðRhomemÞ

For example, the first out of eight, chemical reactions above
(i.e. activation of membrane bound Rho) becomes translated into
the following reaction term in the SECME:

M̂M-M% P¼
Xn

i ¼ 1

Xm

j ¼ 1

ð�kactmijPðm;m%;c;c%;tÞ

þkactðmijþ1ÞPðmþ1ij;m
%�1ij;c;c

%;tÞÞ ð2Þ

Analogous equations are written for the remaining seven
chemical reactions. The diffusion term for membrane bound
inactivated Rho (i.e. species M), reads,

D̂MP¼ t�1
Dmem

Xn

i ¼ 1

Xm

j ¼ 1

Xn

k ¼ 1

Xm

l ¼ 1

Lijklð�mijPðm;m%;c;c%;tÞ

þðmklþ1ÞPðmþ1kl�1ij;m
%; c;c%;tÞÞ ð3Þ

where tDmem and tDcyt are the characteristic diffusion times for
the membrane-bound and cytosolic Rho molecules, respectively,
and Lijkl a member of the set L¼ fLijklji; kAf1 . . .ng; j; lAf1 . . .mgg,
which represents the connectivity of the 2D lattice geometry: If
the voxels at (i,j) and at (k,l) are ‘‘connected’’ (Lijkl=1), a molecule
can ‘‘diffuse’’ from the voxel at (i,j) to the voxel at (k,l) and vice
versa. If the voxels are ‘‘not connected’’ (Lijkl=0), ‘‘diffusion’’ is not
allowed between these voxels. L in our model is chosen such that
the molecules can diffuse from the current voxel to the adjacent
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voxels, up, down, left or right, but not diagonally. In addition to
membrane bound Rho, three analogous diffusional terms are
written for cytosolic Rho (species C with diffusion constant tDcyt),
and two activated forms of Rho (C% with tDcyt and M% with tDmem).

This Rho small GTPase system is a simplistic model for recent
experimental observations which used FRET-based biosensors in
living cells (Pertz et al., 2006; Nalbant et al., 2004; Kraynov et al.,
2000).

2.1.2. Diffusion-only system

We have also performed two sets of simple simulations to
examine the way the number fluctuations caused by reactions
only are distinguishable from fluctuations in a diffusion only
system, when the corresponding spatio-temporal correlation
functions are compared. The RDME for a molecule A that does
nothing but diffuse is the following:

d

dt
PðCA;tÞ ¼

Xn

i ¼ 1

Xm

j ¼ 1

Xn

k ¼ 1

Xm

l ¼ 1

t�1
D LijklPðC

A
�1ijþ1kl;tÞ ð4Þ

2.1.3. Reaction-only system

In the reaction-only system, a fluorescent molecule F converts
back and force to a temporal non-fluorescent state X,

F $
kf

kb

X ð5Þ

The RDME for this system is

d

dt
PðCF;CX;tÞ ¼

Xn

i ¼ 1

Xm

j ¼ 1

kf C
F
ijP CF

þ1ij;C
X
�1ij;t

� �h i�

þ kbCX
ij P CF

�1ij;C
X
þ1ij;t

� �h i�
ð6Þ

This system resembles an experiment performed by Dickson et al.
(1997), where GFP molecules are congealed in a gel and their
blinking was observed by video microscopy.

2.2. Spatio-temporal correlation function (STCF)

A spatio-temporal correlation function is computed from the
spatially and temporally resolved concentration profile of some
molecular species. A fluorescence intensity recorded by video
microscopy is proportional to the concentration of the labeled
molecule (Elson and Madge, 1974). Let Ið~R; tÞ be the fluorescence
intensity at position ~R ¼ ðx; yÞ at time t. The spatio-temporal
correlation at distance ~r ¼ ðx;ZÞ and time lag t is defined as

STCFðr; tÞ ¼ /dIð~R;tÞ � dIð~Rþ~r ;tþtÞS
/Ið~R;tÞS/Ið~R;tþtÞS

ð7Þ

where dIð~R; tÞ is the fluorescence fluctuation, dIð~R; tÞ ¼

Ið~R; tÞ�/Ið~R; tÞS. The STCF may be defined as STCFðx;Z; tÞ as in
Kolin and Wiseman (2007), in which case the dynamics difference
between x and y directions may be characterized, enabling to
detect, for example, an existence of a directed transport of
molecules. If the system is spatially isotropic, the distance

r¼ j~r j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þZ2

q
may be used instead.

2.3. SA-based RD system identification

If the biochemical reaction network is known, but the rate
constants have not been determined, one can vary the latter
values to obtain the best fits to the STCF curves. In cases, when
small uncertainty may exist in the network connections, one
could fit the experimental data with alternative models, that, in
turn, may help to choose the most optimal network architecture.
We have devised an iterative computational simulation approach
to tackle these problems. With the stochastic simulation program,
fluctuation patterns of RD systems can be computed for arbitrary
RD models. By iteratively optimizing the difference between the
computationally obtained fluctuation patterns with the data from
an ‘‘unknown’’ system, one may be able to identify the best model
for the observed system and quantitatively characterize the
dynamics of this system.

However, since fluctuations are stochastic in nature, the
spatio-temporal fluctuation patterns of RD systems cannot be
directly compared (i.e., two separate observations of an identical
RD system would give different fluctuation patterns). The STCF
approach characterizes well such systems, because correlation
functions describe the statistical properties of the fluctuation
patterns. Therefore, by quantitatively comparing the STCF
computationally obtained from a ‘‘trial’’ model with the ‘‘target’’
STCF from an unknown system, and by iteratively modifying the
trial model to minimize the difference between the two STCFs,
one may be able to identify the RD model for the system of
interest. In this paper, we have developed a RD system
identification method using the residual sum of squares (RSS) as
the quantitative measure and the SA algorithm for the iterative
optimization.

The STCFs were quantitatively compared by evaluating the RSS,

RSS¼
X

r

X
t
½STCF1ðr; tÞ�STCF2ðr; tÞ�2: ð8Þ

The RSS is zero when STCF1ðr; tÞ and STCF2ðr; tÞ are identical, and is
greater than zero if the two are different.

The SA technique (Kirkpatrick et al., 1983) is used to minimize
this RSS. The technique is a Monte Carlo method to search
a parameter space, which uses formal ‘‘temperature’’ and the
Metropolis criterion to accept or reject newly found parameter
sets during the course of optimization in order to avoid
being trapped by local minima and reach the global minimum.
This is achieved by occasionally accepting uphill moves
on the ‘‘RSS landscape’’ while downhill moves are always
accepted.

The iterative optimization process was implemented as
follows: Firstly, the upper and lower bounds of the search ranges
are defined for each parameter to be optimized. The narrower the
parameter range, the more efficient the search process is.
The program explores N-dimensional parameter space (N is the
number of parameters to be optimized) by N-dimensional
Brownian motion, which is initialized at a random location in
the parameter space. Within a single iteration, a stochastic RD
simulation is run at the current location of the search, and the
resulting STCF is compared with the target STCF to obtain the RSS.
This RSS value is subjected to the Metropolis criterion. This
procedure is iteratively repeated, and the ‘‘temperature’’ is
decreased during the course of iterations according to a
preprogrammed schedule. In this program, the first 10% of the
total steps is run with infinite temperature, meaning every step is
unconditionally accepted. Then the temperature is determined
based on the square root of variance found from the first 10% of
the run. Temperature is linearly decreased as the iteration
proceeds, and reaches zero when the 90% of the total steps is
reached. The last 10% of the annealing is run with zero-
temperature, meaning only downhill moves are accepted. The
diffusion coefficient for N-dimensional Brownian motion is
empirically chosen to be just large enough to explore the whole
range of the parameter space. This diffusion coefficient was also
linearly decreased to a fraction of the original at the end,
effectively narrowing the parameter search space at the later
stage of optimization, thus increasing search efficiency.



ARTICLE IN PRESS

N. Tanaka, G.A. Papoian / Journal of Theoretical Biology 264 (2010) 490–500494
3. Results and discussion

3.1. Simple RD systems may be distinguished by their spatio-

temporal correlation signatures

The STCFs show distinctive signatures of whether the number
fluctuations are due to diffusion or chemical reactions. In Fig. 3,
panels A–C show the STCFs of the diffusion-only systems, and the
panels D–F show the reaction-only systems. The xz-plane
intercept of a STCF represents the purely temporal correlation
(autocorrelation) and yz-plane intercept is the purely spatial
correlation.

The most prominent difference between the obtained STCFs of
the reaction-only simulations and the diffusion-only simulations
is seen in the spatial correlation part (along the r axis): There is no
spatial correlation in the reaction-only systems, whereas there
are some nonzero values at rZ0 in the diffusion-only cases.
This is because the molecules in the reaction-only simulations do
not diffuse at all, and their stochastic blinking reactions are
completely independent from other molecules. On the other hand,
diffusion-only simulation results show some positive spatial
correlations at rZ0. This trend is most prominent at the fastest
diffusion constant result (Fig. 3 F), and not recognizable at the
lowest diffusion constant result (Fig. 3 D). The two sets of
simulations (reaction-only and diffusion-only ones) illustrate that
spatial correlations are primarily driven by diffusion.

The temporal part of the correlation functions becomes longer
ranged as the parameter values become smaller, be it either the
diffusion coefficient or the reaction rate constant. On the other
hand, the purely spatial part of the correlation functions becomes
shorter ranged as the diffusion coefficient decreases, and it
vanishes in the reaction-only simulation results, where the
diffusion coefficient of the molecule is zero.

When the blinking rate kf, kb is set greater than 1 s�1, the
resulting STCF becomes d function-like, i.e., STCFðr; tÞ � 0 at other
than ðr; tÞ ¼ 0 (data not shown), as binning was performed when
computing the STCFs with the bin size of 1 s. Because of this, the
temporal resolution limit of the STCFs shown in Fig. 3 is 1 s. (One
can see that in Fig. 3 C where the rate is 1 s�1, the STCF is already
close to d function-like.) Since these STCFs in Fig. 3 are calculated
from simulation trajectories, the resolution can be improved to an
arbitrary level if needed be, by narrowing the bin size. However, if
a STCF is calculated from an experimental data, the time
resolution of the experimental data sets the resolution limit of
the STCF, which is � 33 ms for a typical CCD camera.
Fig. 3. Plots of STCFs from stochastic reaction–diffusion simulations are shown. The S

STCFs of simple 1st-order reversible reaction simulation results. (D–F) The STCFs of sim
For these diffusion-only and reaction-only systems, analyti-
cally exact autocorrelation functions are known, which are a
Lorentzian for the diffusion-only system (Elson and Madge, 1974),
and an exponential decay for this simple reaction-only system
(Starr and Thompson, 2001). While our stochastic simulation
results agree qualitatively with these analytical predictions, the
least-square fitting of theoretical curves and the correlation
curves from our simulation results were not in good quantitative
agreement (data not shown). This is because our stochastic
simulation model uses strongly discretized spatial geometry,
while the theories work with continuous space. However, the
same problem occurs for experimentally observed fluorescence
fluctuations using CCD camera and a fluorescence microscope,
where the spatial and temporal resolution values are similar to
those in our simulations. Generally, diffusion or reaction-kinetic
parameters obtained by CCD-camera-based measurements are
not as precise as those obtained by FCS measurements with much
higher time resolution and smaller observation volume, where the
latter are more straightforward to compare with analytical
predictions. Still, even taking into account the current resolution
limits, we found that results reported in this work provide useful
information in interpreting and predicting the underlying RD
systems, as elaborated below.
3.2. ‘‘Mutating’’ the Rho reaction network is clearly reflected

in STCFs

Next, we have examined a simple RD model of a signaling
molecule Rho (Fig. 2) to examine an RD system in which the
molecules undergo both chemical reactions and diffusion. Rho is a
small GTPase that plays a major role in regulating cell motility
driven by the actin cytoskeletal processes. Its dynamics has been
observed recently using a FRET biosensor (Pertz et al., 2006). One
of the goals of our calculations was to gauge the change in STCFs
as the wild-type model is perturbed in various ways. Fig. 4 shows
the results of the simulations for the WT, CA and CS model.
The STCFs were computed for the high-FRET states H. For all the
simulations, all Rho molecules were prepared in the inactive,
membrane-bound state at t=0.

In the CA simulation result, the time-lapse images turned
greener in color as time progresses, indicating the equilibrium
shifted toward the activated Rho states (Fig. 4, Time-Lapse
Images). The STCFs for the CA and WT showed a distinctive
difference: The temporal correlation decay of the STCF is milder
TCFs are computed for the concentration of the fluorescent species [F]. (A–C) The

ple diffusion simulation results. The STCFs are normalized to 1 at the origin.
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Fig. 4. The Rho small GTPase simulation results. The red crosses in the model cartoons indicate the inhibited transitions in the small GTPase model shown in Fig. 2. Each

STCF was computed for the high-FRET states (H, see text) of the simulation result. The time-lapse images in each simulation show the temporal development of the

simulation with 2-s intervals. The 20�20 lattice geometry corresponds to 20mm� 20mm. The total Rho (H+L) are shown in blue, the high-FRET states (H) are shown in

green. The inset shows the color code table for the time-lapse images. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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than the other two STCFs for the WT and CS models. This is
consistent with the fact that only in this model the turnover rate
(kf+kb, i.e., one cycle of conversion from inactive to active back to
inactive) is diminished. In the CS simulation result, the spatio-
temporal fluctuation patterns were apparently not very different
from the WT result (Fig. 4 A,C Time-lapse Images). However, the
STCFs for the two simulation results were notably different: The
STCF for the CS result showed a much higher spatial correlation
than that of the WT result.

In summary, these simulations indicate that the spatio-
temporal correlation analysis is effective in characterizing RD
systems with coupled reactions and diffusion. A simple Rho
GTPase activation model was used to examine the STCF of the
fluctuation patterns. Despite the minimalist design of the model,
the system contained an internal degree of freedom (namely,
cytosolic/membrane-bound states) that is not directly probed by
the experimental observables (the high- and low-FRET states).
The changes in the fluctuation dynamics were distinctively
characterized upon some perturbations to the model. When the
inactivation of Rho is inhibited in the CA model, the temporal
correlation of the fluctuating pattern has increased, reflecting the
slow turnover dynamics. This was also evident from the
equilibrium shift toward high-FRET states (Fig. 4 B). In the CS
model result, the effect of the arrest of Rho molecules in the
cytosol was not readily recognizable from the video images, but
was clearly noticeable in the STCFs. Thus, noisy fluctuation
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Table 1
The parameter values and the search ranges used in the RD simulations and in SA based parameter optimization are listed.

Parameters Wildtype (WT) Constitutively active (CA) Cytosolic sequestration (CS) Search range in

system identification

kinact (s�1) 0.1 0.001 0.1 0.0005–0.2

kact (s�1) 0.1 0.1 0.1 Fixed

kon (s�1) 0.04 0.04 0.0004 0.0001–0.05

koff (s�1) 0.04 0.04 0.04 Fixed

Dcyt ðmm2 s�1Þ 0.5 0.5 0.5 Fixed

Dmem ðmm2 s�1Þ 0.001 0.001 0.001 Fixed

Table 2
The reverse-engineering results for the WT model are shown.

WT (RSS=0.00330) Original Identified Error Error-interval ratioa (%)

kinact (s�1) 0.100 0.0929 �0.0071 � 3.6

kon (s�1) 0.0400 0.0407 +0.0007 +1.4

a The error-interval ratio values were calculated by the formula/error/[(upper

bound of the search range)–(lower bound of the search range)]. The denominator

(the interval) is 0.1995 for kintact and 0.0500 for kon. The parameter values for the

search ranges are listed in Table 1.
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patterns may contain useful information although they may not
be directly recognizable, and the STCF is an effective way to reveal
that information.
3.3. Kinetic parameters of the Rho reaction network were reverse-

engineered from the STCFs

In the above Rho small GTPase simulations, it was found that
the fluctuating dynamics of RD systems with coupled reactions
and diffusion may be differentially characterized using STCFs.
Therefore, we asked the next question of whether the parameters
in the RD systems is identifiable by analyzing just their
fluctuation patterns (or the STCFs derived thereof). For this
purpose, we used the SA-based RD system identification method
developed in this study. In this present paper, we report the
identification of two parameters in the above small GTPase
models, namely, kinact and kon out of the six parameters in the
model (see Table 1 and Fig. 2). These two parameters are the ones
that are varied in the CA and CS models relative to the WT model.
The STCFs shown in Fig. 4 are used as the target STCFs. The values
for parameters other than two parameters to be optimized and
the overall framework of the RD system as shown in Fig. 2 were
known to us beforehand.

Firstly, the WT model parameters were reverse-engineered.
The parameter search ranges were chosen so that the kinetic
parameter values for both the WT and the mutated models are
covered, spanning nearly 3 orders of magnitude for kinact and 2
orders of magnitude for kon, as listed in Table 1. The reverse-
engineered parameter values were in good agreement with the
original values (see Table 2): The magnitude of error were
�0.0071, or 0.71%, for kinact and +0.0007, or 1.8% for kinact.
Fig. 5 shows the locations of the identified parameter set in the 2D
parameter space, as well as the RSS landscape that has been
rendered as a result of the SA search process. The reverse-
engineered parameter set is located in the same basin as the
original parameter set.

To evaluate the effectiveness of the SA algorithm, we have
introduced a quantitative measure, namely the error-interval
ratio. This is the ratio between the absolute error and the size of
parameter search range, or interval. When the interval is set
wider, it becomes more difficult for the optimization becomes to
reach the true value, if the number of iterations for the search is
held constant. This error-interval ratio serves as a kind of cost-
performance indicator for our optimization results: In our single
SA optimization process, 1600 iterations were performed, that is,
1600 different points in our 2D parameter space were explored,
therefore, if the parameter space was evenly scanned on the 1600
grid points on the 40�40 lattice, the optimization would achieve
a 2.5% (1/40) margin of error per parameter. However, the
parameter value optimization in this STCF-based reverse-engi-
neering is a more complicated task, because of the intrinsically
noisy nature of fluctuations. Since the STCF is a statistical average
quantity of stochastic fluctuations, the STCFs computed in this
study bear margin of errors. The RSS, which is used as an
evaluation criteria in SA optimization, inherits these statistical
errors. Since the RSS value is not uniquely determined for a given
set of parameter values, it is not a straightforward problem to find
the ‘‘true’’ minimum of the RSS. Consequently, even when the
parameter space is scanned evenly, the precision is expected to be
worse than the theoretically expected 2.5% threshold.

We found that the SA search outperforms the simple scanning,
thanks to the SA algorithm’s ability to search low-RSS-value
regions in the parameter space more heavily. On the whole,
although the precision was not outstanding, our SA-based
optimization method was still able to identify the RD network
parameter values quantitatively, thus, it may be used as a
valuable tool to analyze experimentally observed fluorescence
fluctuations.
3.4. Perturbations to the Rho signaling network were detected by the

RD system identification

Next, we have examined if our RD system identification
method could detect perturbations applied to the biosignaling
reaction network. All perturbations we applied to the simulation
model were inhibitory: In the CA model, the Rho inactivation rate,
kinact was decreased by Dkinact ¼�0:099 s �1( see Table 3). Our SA
search revealed a corresponding decrease of Dkinact ¼�0:087 s�1.
Similarly, in the CS mutant, the SA search revealed a decrease of
0.0392 s�1 in the Rho-membrane association rate, kon, compared
with the exact value of 0.0396 s�1 decrease. As seen in Fig. 5, our
system identification method has located the altered RD systems
in the 2D parameter space remarkably well, clearly elucidating
the altered dynamics in the mutated Rho reaction models.
Interestingly, in terms of determining the absolute values of
kinact and kon, the corresponding errors were large. The cause of
the low precision can be accounted as follows: The perturbations
to the system were rate inhibitions by 100-fold in the both
mutants. As a consequence, the reaction rates that were inhibited
became vanishingly small, thus, the corresponding reactions
hardly contribute to the observed spatio-temporal fluctuation
patterns, leading to large relative uncertainty during parameter
inversion. In some cases, one might consider setting these very
small rates to zero in the RD network, if they are expected not to
contribute much to the RD dynamics.
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Fig. 5. The RSS landscapes in the two-dimensional parameter space. Each landscape was computed from the SA trajectory that has achieved the lowest RSS value among

the 100 runs. The 1600 points in the two-dimensional parameter space were explored in a single run, and the landscape was generated by smoothing these 1600 points.

The contour maps projected on the bottom plane is computed from the same data. The filled wedges on the contour maps point to the original model parameter values, and

the open wedges point to the values found by the RD system identification. The arrows in CA and CS models show the displacements from the original WT parameter values.

Table 3
Reaction-network ‘‘mutations’’ are detected in the CA and CS models.

CA (RSS=0.00569) Original Identified Error Error-interval ratioa (%)

Dkinact (s�1) �0.099 �0.087 +0.012 +6.0

Dkon (s�1) 70.000 +0.0035 +0.0035 +7.0

CS (RSS=0.00309) Original Identified Error Error-interval ratioa (%)

Dkinact (s�1) 70.000 +0.033 +0.033 +17

Dkon (s�1) �0.03960 �0.03920 +0.00038 +0.8

a The error-interval ratio values were calculated by the same formula used in Table 2.
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Overall, our RD system identification method could success-
fully reverse-engineer the parameter values for simple Rho
signaling networks. Despite concerns about absolute precision
for vanishingly small rates, the RD system identification method
can quantitatively characterize the relative rate changes between
the three small GTPase signaling models. Therefore, the fluores-
cence fluctuation analysis of fluorescence microscopy data may
serve as a powerful tool for differentiating among various
candidate biosignaling RD models and obtaining a good guess
for the model parameters.
3.5. Analysis of fluorescence microscopy data of Rho activation in

living cells

The combination of fluorescence probes and video microscopy
enables direct observation of biomolecular activities in living cells
with a notably high spatial and temporal resolutions. Here we
show that our STCF analysis can capture the characteristics of
the spatio-temporal fluctuations of FRET signals of Rho (Fig. 6),
which has been observed recently (Pertz et al., 2006). These
particular data were recorded at a slow rate (1 frame/min),
because the main purpose of this measurement was to observe
the cell’s morphological change and Rho activation pattern
simultaneously. Thus, these experimental data are not directly
comparable with our computational results, because the number
fluctuations due to the reactions and diffusion are not captured at
this time scale. Still, our STCF analysis allows to distinctively
characterize the spatio-temporal patterns of fluorescence signals
from different sources.

We have computed the STCFs of fluorescence patterns from
two different sites of the lamellipodial region of the cell (Fig. 6 A).
In the Rho activity FRET biosensor, FRET-pair fluorescent proteins
(CFP and YFP) are genetically fused into the Rho gene. When this
gene product is in the activated form (GTP is bound to Rho moiety
of the protein), the RBD (Rho-binding domain) that is fused to the
N-terminus of this protein binds to the effector binding site of the
Rho moiety, bringing CFP and YFP close enough to cause FRET (see
Fig. 6 B). The FRET signal (the panel A right) reports the activation
of Rho, while the YFP (left) shows the total amount of Rho
biosensor at the site.

As shown in Fig. 6 E, the Rho activity in the living cell exhibits
highly dynamic fluctuating patterns. Fig. 6 C shows the STCFs
calculated from two regions of the cell (indicated in Fig. 6 A). The
cause of the fluctuating patterns of FRET signals is unknown, to
our knowledge. It is not likely that they are caused by the number
fluctuations of Rho due to reactions and diffusion which we have
discussed in this paper, since the recording time scale was 1 min.
However, it may be possible that the Rho activity is controlled in a
certain type of RD system where the dynamic pattern emerges at
this timescale, known as dynamic Turing pattern formation (Loose
et al., 2008). Another possibility is an existence of a dynamic
heterogeneous structure in the medium that is involved in Rho
activation, such as membrane rafts or a molecular complexes such
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Fig. 6. Dynamic fluctuations of fluorescent signals from FRET-based biosensor-tagged Rho small GTPase in the living cell are shown. (Panels A, B and E are adapted from

Pertz et al., 2006 with the authors’ permission.) (A) Rho activation in a migrating mouse embryonic fibroblast cell. (B) The design of Rho activation biosensor. The image

labeled YFP in the panel A is the color-coded fluorescence intensity of YFP, ratio is the ratio of the FRET signal intensity to the YFP fluorescence intensity. (C) STCFs of the

FRET ratio (H/(H+L), see text) calculated from the microscopy video data. The 30�30 pixel subsections of the video images are taken from two different regions of the cell

(black box and white box in A, correspondingly labeled 1 and 2 in panels C and D. (D) RSS values for the STCFs in C. (E) Time-lapse image series of FRET video data from ratio

1 data. The scale bar is 30mm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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as formation of signalosomes (Wei et al., 2008) or scaffolds
(Pullikuth and Catling, 2007). Although this is beyond the scope
of this paper, it may be interesting to perform a deterministic
RD simulations to compare model predictions with experimental
observations to elucidate the spatio-temporal RD patterns
observed at this timescale.

The STCFs of the YFP fluorescence intensity obtained from the
two different sites of the cell were dissimilar to each other
(RSS=8.366), whereas the STCFs of the FRET signals are similar
(RSS=1.031) (Fig. 6 C, D). The large difference in YFP spatio-
temporal distribution patterns may be ascribed to the cell’s
movement during this video recording: The YFP fluorescence
intensity indicates the amount of Rho-biosensor molecules at the
position rather than the reaction–diffusion dynamics. Therefore,
the YFP fluorescence intensity is proportional to the thickness of
the cell, and the thickness of the cell may dynamically change as
the cell moves.

Thus, the STCF analysis of experimentally observed Rho FRET
biosensor images showed that the Rho activation exhibits a
substantial spatial and temporal correlations at this timescale,
and that the distribution dynamics of YFP signal, which indicates
the total amount of Rho biosensor, apparently reflects the cell’s
movement. If the video data are recorded with a temporal
resolution high enough to capture the number fluctuations due
to reactions and diffusion, the computational analysis developed
in this study may provide further information about the dynamics
and mechanism of this signaling molecule.
4. Conclusions

Aiming to elucidate intricate biosignaling reaction networks
from video microscopy experiments, we have developed a
method to analyze spatio-temporal fluorescence fluctuations that
combines stochastic RD simulations, a STCF analysis, and a
SA-based system identification technique. We have shown that
the reaction dynamics and the diffusion of molecules in the RD
systems are well represented in the STCFs computed from the
corresponding spatio-temporal number fluctuations. The iterative
SA optimization technique used in this study could successfully
reverse-engineer the kinetic parameter values of the Rho RD
system. Also, perturbations to the RD systems were well
characterized using the same method.

The precision of our analysis method was only moderate,
due to the lower resolution limits of CCD cameras compared to
detectors used in FCS, and the compromised efficiency of SA
optimization due to the inherent stochastic nature of the
fluctuations. However, we have shown that, despite these
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precision limits, analyzing fluorescence fluctuation in both the
spatial and temporal dimensions can provide remarkably rich
information about complex RD systems that cannot be reached
otherwise. FCS may also be used for measuring diffusion
coefficients or reaction rates, however, one needs to make
simplifying theoretical assumptions to extrapolate the time-series
data to the dynamics of spatio-temporal RD system, which
severely restricts probing of more complex biological RD systems.

While the CCD camera time resolution sets the resolution limit
of the STCF analysis, it is worth noting that correlation analysis
intrinsically features a kind of band-pass filter that can help
eliminate unwanted noise components from the signal to be
analyzed. We discussed above that if an input signal has a
characteristic correlation time less than the temporal resolution
of the STCF, the STCF of such a signal becomes d function-like.
This, in turn, may be helpful in filtering out the thermal noise
from the CCD camera. When weak signals are observed in video
microscopy observes, the obtained video images are masked with
CCD thermal noises. However, since this noise, originated from
thermal motions of electrons, is much faster in time scale than the
CCD camera temporal resolution, in the STCF analysis, this noise
component is concentrated into a d function-like spike at the
origin, leaving the shape of STCF from the true signal intact. Thus,
thanks to the time-scale difference in the fluorescence fluctua-
tions and CCD thermal noise, the STCF easily separates these two
components. For the similar reason, the STCF analysis would also
work well at excluding static background noises, such as caused
by an unevenness of the fluorescence excitation illumination
source (this time the noise has a much slower characteristic time
scale than the desired true signal).

In summary, the current analysis approach may be effectively
applied to experimental observations with some advantages over
the existing methods. Currently, a common way to measure
diffusion coefficients in vivo is based on fluorescence recovery
after photobleaching (FRAP). However, FRAP may perturb cell’s
biochemical systems crucially, as it needs to bleach fluorescently
labeled molecules. The fluctuation-based analyses may serve as a
much less invasive alternative to FRAP, as it does not require
harsh photobleaching (this is not a problem in FCS), allowing
repetitive observation of the same living cell sample for long
periods of time. Also, our SA-based reverse-engineering technique
can be extended to other applications with different timescales
and length scales. For example, biological RD systems some-
times exhibit chemical oscillations, which exhibit distinctive
spatio-temporal dynamic patterns (Loose et al., 2008). With an
appropriate deterministic RD simulator, the SA-based analysis
technique may serve as an effective analysis method for
elucidating such RD systems.
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