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Functional versus folding landscapes: the same yet different
Pavel I Zhuravlev and Garegin A Papoian
Protein functional landscapes are characterized by a modest

number of states compared with the folding landscapes,

allowing brute force sampling of these states for smaller

proteins using computer simulations. On the other hand,

because the functional landscape topographies are

complicated, the native state dynamics are often difficult to

interpret. Nevertheless, a number of experimental and

computational techniques have recently emerged that are

designed to reveal the essential features of the native

landscape, such as the hierarchical organization of

conformational substates. These studies also shed light on the

mechanisms of protein function, for example, explaining how

chemical energy is transduced in molecular motors. Overall,

interpreting experimental results in the light of the functional

landscape paradigm considerably enhances the understanding

of complex biomolecular processes.
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Introduction
Allosteric and functional transitions in proteins have been

studied for many decades, starting from the successful

kinetic models used to describe cooperative oxygen bind-

ing in hemoglobin [1]. However, as the microscopic un-

derstanding of proteins deepened, new questions kept

arising. For example, despite a burgeoning understanding

of the structure of the native state, the means by which a

protein chain can fold into a unique 3D structure, pre-

defined by its amino acid sequence, remained a mystery.

This conundrum has been resolved with the emergence

of the energy landscape theories, where it became appar-

ent that protein landscapes are specialized compared with

peptides with random sequences [2–9]. In particular,

protein conformations which share many similar contacts

with the native state are low in energy, introducing strong

correlations in the energy landscape, which are absent in
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random heteropolymers. The energetic gradient toward

the native state has been conveniently visualized in the

form of a funnel [3], where conformational energy is

plotted on the vertical axis and conformational entropy

is indicated by the width of a funnel cross-section (see

Figure 1). In addition to creating a funneled landscape,

evolution also ensured that it is smooth, to avoid signifi-

cant kinetic traps during the folding process. This is

achieved by minimizing conflicts between the favorabil-

ity of native contacts, which is known as the principle of

minimal frustration [10]. These two landscape properties

encourage a statistical view of the folding landscape,

where specific details about various barriers and minima

are of diminished importance, and are replaced by corre-

sponding statistical distributions [11].

On the other hand, structural knowledge about the native

state turned out to be incomplete, since it is not a single

conformation at the bottom of the funnel, but a large

ensemble of interconverting structures [12,13]. Ironically,

the topography at the bottom of the funnel (the functional

landscape) is statistically more complicated than the

topography on the scale of the whole funnel (the folding

landscape). When the protein chain moves from the

middle part of the funnel, where it is highly dynamic

(although compact), down to the bottom, it loses a sig-

nificant amount of configurational entropy (see Figure 1).

Subsequently, the chain dynamics are more strongly

affected by the ruggedness of the landscape — specific

barriers and minima — rather than being mainly driven

by configurational entropy. Thus, the system starts to run

out of states, signifying a transition to more glassy

dynamics. For this reason, the statistical view, which is

so helpful for describing the folding process, is less

universal when describing functional motions (with some

exceptions, such as the discovery of the hierarchical

organization of native-like conformations [12]). For

instance, a protein chain at the bottom of the funnel

may reside in a particularly deep trap for a long time,

waiting to overcome a large barrier, and this event may be

more important in determining its functional dynamics

than the distribution of other barriers and traps on the

functional landscape. Therefore, it is most helpful to

describe such a landscape with a detailed topographical

map instead of statistical distributions of minima depths

and barrier heights. Thankfully, the size (phase volume)

of the bottom of the funnel is much smaller than in

protein folding, and proteins in nature can fully explore

it by brute force on biologically relevant timescales.

Current computational resources are also approaching

this limit; hence, functional landscapes of some smaller

proteins have been sampled on microsecond timescales.
www.sciencedirect.com
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Figure 1

Protein folding landscape is schematically depicted as a funnel [3]. The

vertical axis corresponds both to energy of contacts and also to Q,

where the latter indicates similarity to the native state. In the upper

region the protein chain is unfolded with a large conformational

entropy. In the middle part of the funnel, the chain becomes compact,

but retains diminished, yet still significant entropy. The lower part is a

collection of similar low-energy conformations separated by barriers,

known as the native state. The funnel can be stratified according to Q. At

a fixed Q, configurational entropy is defined by the interplay between

total number of states and ruggedness of the landscape for that

particular Q stratum. At glass transition temperature Tg the

configurational entropy almost vanishes. In the figure, TgðQ00Þ>TgðQ0Þ.
The funnel region around Q� 0:7, which corresponds to the onset of

native-like conformations, is estimated to have a relatively high glass

transition temperature [3].
Despite the number of conformations in the native state

being significantly reduced relative to the unfolded

protein, the atomistic dynamics are still highly multi-

dimensional (hundreds or thousands of degrees of free-

dom) and must be projected to a few global or local

coordinates to allow interpretation. This is critical for

achieving broad conceptual insights, even if protein

native dynamics can be adequately simulated with power-

ful computers. Otherwise, numerical simulations might

fall into danger of simply becoming a surrogate for real

experiments.
www.sciencedirect.com
Choosing appropriate collective coordinates is a highly

non-trivial task, however. For instance, Q, the fraction of

native contacts, which is very useful when studying the

folding landscape, because it provides a measure of

correlation with the native state, is unlikely to be suffi-

cient for describing the functional landscape of folded

proteins. At the bottom of the funnel, one often is more

interested in motion transverse to Q. However, exci-

tations in a folded protein may include its partial unfold-

ing [14], so Q still serves as one of many useful

coordinates. In the discussion below we provide an over-

view of different collective coordinates that have been

recently employed at high structural resolution or at long

timescales to describe the native state dynamics. We also

discuss techniques that try to avoid the use of global

coordinates altogether. Finally, we overview some cases

where native dynamics can be detected experimentally

and fruitfully interpreted using the functional landscapes

paradigm.

Trees and networks
A well-known method for dimensional reduction — prin-

cipal component analysis (PCA) — can be applied to

characterize protein dynamics [15–17,18��]. The main

advantage of this approach is that it uses the actual protein

dynamics itself to generate the appropriate collective

coordinates for landscape description, relieving the con-

cern of wondering if a priori chosen variables have cap-

tured all important motions. This technique has been

frequently used to project the dynamics into first and

second principal components, identifying conformational

substates in the native state ensemble [15,16,19]. In a

recent development, Materese et al. analyzed these basins

using all relevant principal components, instead of just

the first two, which allows one to follow basin splitting in

higher dimensions [18��]. Hence, their approach directly

reveals the hierarchical organization of protein native

landscapes, in agreement with earlier experiments

[20,21]. Thus, it has been shown that conformational

substates in the native basin can be arranged into a tree,

where the latter may potentially reflect organization of

transition rates between the conformational substates

[18��] (see Figure 2).

On a conceptually related note, a number of studies

mapped protein folding landscapes by grouping the con-

formations visited during extensive Molecular Dynamics

(MD) simulations to network nodes, building networks of

states [22�,23–28]. There are a number of ways to group

the visited conformations into network nodes, based on

structure alone [22�], or on structure and features of the

potential energy surface with the help of transition dis-

connectivity graphs [24,29]. At the next step, one esti-

mates the transition rates between network nodes,

subsequently, assigning the network edges. Finally, the

resulting master equation is solved for various first pas-

sage time problems, to model long-timescale kinetic
Current Opinion in Structural Biology 2010, 20:16–22
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Figure 2

Tree-like hierarchy of the functional landscape of eglin c is revealed by principal component analysis [18��]. For instance, a basin on a (PC1 and PC2)

plot splits in two sub-basins on a (PC2 and PC3) plot. Five hierarchical tiers were identified. We thank Christopher K Materese for preparing the figure.
processes. Most of these studies relied on coarse-grained

force-fields with implicit solvent because of the large

phase volume of the folding landscape. Application of

the network construction approach to functional land-

scapes of proteins is also fruitful [30], although with large

proteins the existing efforts still encounter difficulties

with sampling even in implicit solvent models and use

phenomenological transition rates [24]. The main

advantage of this class of methods is that they evade

the problem of a priori choosing a complete set of col-

lective coordinates. The kinetic network approach can

also be combined with PCA and construction of free

energy surfaces in hybrid techniques [22�].

Free energy surfaces
Free energy surfaces (FESs) may provide a powerful

representation of the functional landscape [22�,31��,32��].
One way to take advantage of computed FESs is to run

Brownian dynamics on top of them to investigate various

first passage time problems [31��,32��]. For example, the
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first passage times of a transition between similar protein

conformations can be used to characterize the nature of

protein dynamics: whether it is diffusive like in a liquid or

activated (glassy) like in a supercooled liquid. Wu et al.
investigated this issue for the small protein, Trp-Cage,

finding that at room temperature the protein dynamics is

borderline between diffusive and activated [31��].

FESs may be computed using structure-based coordi-

nates such as Q or root mean square deviation (RMSD).

Since two such coordinates are required, slightly different

native structures [31��] or different functional confor-

mations [33��,34] have been used. Despite the correlation

of Q with folding, these 2D surfaces resolve motions

transverse to folding at high structural resolution in the

native-like structural basin [31��]. A two-dimensional Q1,

Q2 surface also accounts for unfolding excitations [14], as

well as allosteric motions in which native contacts are

broken in the cracking processes [33��,34–37]. Whether

partial unfolding occurs is an important characteristic of a
www.sciencedirect.com
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functional transition that can be determined from a tra-

jectory on a Q-based free energy surface [33��,34].

As discussed in the Introduction, characterization of

functional landscapes requires many additional collective

coordinates, which can be highly problem specific. For

instance, to describe the motor protein kinesin function,

the spatial motions of its parts are most important. Kinesin

is a large multidomain protein, which moves along micro-

tubules in discrete 8 nm long directed steps. It has two

‘heads’, the domains that interchange in binding to

specific places on a microtubule. In this case, the spatial

coordinates of tethered head center-of-mass (x; y; z) are

convenient for computing a useful 3D FES. The surface,

in turn, can be used to run Brownian dynamics simu-

lations, to estimate various rates for kinesin steps and

reveal the most favorable site for the tethered head to

bind next on microtubule [33��]. In a different context, to

describe the mechanisms behind the catalytic activity of

enzymes or to compute the enzymatic rate constants, a

chemical reaction coordinate is needed, such as the dis-

tance between the atoms which form new bonds or break

old bonds [38]. It has been recently suggested, based on

interpretation of various experiments, that allosteric

motion and catalytic steps are tightly coupled in adenyl-

ate kinase, such that the protein motion facilitates the

catalytic step [39–41]. In order to explore this issue,

Pisliakov et al. used one conformational and one chemical

coordinate to construct a 2D FES from higher resolution

structural models [32��]. Subsequently, they ran Brow-

nian dynamics simulations on this surface, finding no

evidence for direct channeling of conformational exci-

tations into the chemical transformation [32��]. This was

explained by highly dissipative nature of protein confor-

mational dynamics in explicit solvent, where coherent

excitations of specific protein modes decay on timescales

less than a nanosecond, while the chemical catalysis step

usually occurs on the millisecond timescale [32��]. In yet

another study, to understand causes of a particular allo-

steric mechanism, Okazaki et al. used a conformational

coordinate together with binding coordinate (such as

ligand binding energy) to obtain a 2D FES and plotted

allosteric transition paths on it, suggesting that strong,

long-ranged interactions lead to the induced-fit mechan-

ism, while the pre-existing-equilibrium mechanism is

favored by weak, short-ranged interactions [42].

Allostery
Allosteric transitions in proteins result in a global change

in the native conformation upon local perturbation (ligand

binding). They can be explored using functional land-

scape techniques. Allosteric landscapes have evolved to

facilitate specific cooperative functional motions. Direct

experimental observation of allosteric transition pathways

is rarely possible, since energy landscapes are usually not

probed directly, but instead only one or a couple of free

energy minima are observed. A dimeric enzyme caspase-1
www.sciencedirect.com
provides a nice example: in this protein, two cooperative

binding sites are connected by a hydrogen bonding net-

work which globally rearranges upon binding [43�]. Datta

et al. used alanine mutation scanning to determine how

residues in the hydrogen bonding network influence

enzymatic activity. They identified two crucial residues

which form a salt-bridge [43�]. It is expected that

interpretation of allosteric transition ideas in molecules

such as this using energy landscape should be productive.

An example of studying the way specific contacts, in-

cluding salt-bridges and water-mediated contacts sculpt

the functional landscape is given by Materese et al. [18��].

Mapping of the allosteric functional landscapes in

implicit solvent computer simulations can provide insight

into important details, such as the adenylate kinase

allosteric transition involving the pre-existing-equi-

librium mechanism [44] or estimating the relative

stability of two allosteric forms of C2 domain of coagu-

lation factor V [45]. It is now even possible to use explicit

solvent on a microsecond timescale, as Yang et al. have

done for Src tyrosine kinase to build a connectivity map

representing the energy landscape and provide simplified

structural description of the concerted motions during the

activation of the enzyme [46].

Techniques like paramagnetic relaxation enhancement

measurements make it possible to observe transient

dynamical events in protein native dynamics, providing

a glance at the low-populated regions of the functional

landscape [47,48]. A study by Thielges et al. exemplifies

the benefit of increased usage of the energy landscape

language by experimentalists: the authors connected

multiple timescales detected by three-pulse photon echo

peak shift (3PEPS) spectroscopy in antibody–fluorescein

complexes with distribution of the barrier heights on the

functional energy landscape [49]. Terahertz spectroscopy

is yet another powerful technique for probing collective

protein motions and their coupling to the hydration shell

dynamics [50].

Coupling of folding and binding landscapes
Some intrinsically disordered proteins fold only upon

ligand binding, representing a special type of allosteric

transition [51]. A theory of coupling between binding and

folding landscapes was developed by Papoian and

Wolynes [52]. The resulting two-dimensional energy

landscape was subsequently used by Wang and coworkers

to study the detailed kinetics of binding and folding using

path integral techniques [53]. Computer simulations

using coarse-grained and atomistic models have also shed

light on the kinetic mechanisms of the interplay between

binding and folding [54,55]. One possible mechanism of

coupling between binding and folding is localized frus-

tration near the binding site that can be relieved upon

binding [56]. In a very interesting recent development, a

conformationally disordered enzyme was found to be
Current Opinion in Structural Biology 2010, 20:16–22
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catalytically active [57]. Subsequent computer simulations

indicated that the molten-globule-like phase partially folds

upon substrate binding [58]. Since a meticulously defined

three-dimensional structure has always been a cornerstone

for explaining enzymatic catalysis, it was recently argued

that proteins with weakly funneled energy landscapes

challenge the long-held ‘structure–function’ paradigm

[59]. However, there may be good reasons for a protein

to evolve to be unfolded without a ligand. Unfolded chains

occupy a larger volume, which may accelerate binding

kinetics due to the increased cross-section for binding,

according to the so-called fly-casting mechanism [33��,60].

Natively unfolded proteins are also degraded faster by the

proteasome, providing an organism a finer temporal control

over their functional activity [59]. Turjanski et al. [61] built

Q-based free energy surfaces from computer simulations to

elucidate coupling of a natively unstructured transcription

factor folding to binding. They found that binding pre-

cedes folding, and the coupling of binding and folding is in

accordance with NMR experimental data [62]. An explicit

solvent all-atom simulations and subsequent representa-

tion of the energy landscape as 2D FESs gave insight into

metal-coupled folding of a zinc-finger motif [63].

Conclusions
Current computational resources open new horizons in

the detailed sampling of protein functional landscapes.

Techniques developed to characterize the folding land-

scapes and frequently used with coarse-grained protein

models can now be applied to investigate functional

landscapes, even in the presence of explicit water. These

studies provide detailed landscape maps, which, as

explained in the Introduction, are more important for

understanding protein function, than they are to describe

folding, the latter being more amenable to the statistical

treatment. In this review, we have discussed several

recent works that have leveraged the energy landscape

paradigm to explore protein dynamics and function,

revealing its power in characterizing the organization

and kinetics of the native state ensemble.
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