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Proteins are highly complex molecules with features exquisitely selected by nature to carry out essential
biological functions. Physical chemistry and polymer physics provide us with the tools needed to make sense
of this complexity. Upon translation, many proteins fold to a thermodynamically stable form known as the
native state. The native state is not static, but consists of a hierarchy of conformations, that are continuously
explored through dynamics. In this review we provide a brief introduction to some of the core concepts
required in the discussion of the protein native dynamics using energy landscapes ideas. We first discuss
recent works which have challenged the structure-function paradigm by demonstrating function in disordered
proteins. Next we examine the hierarchical organization in the energy landscapes using atomistic molecular
dynamics simulations and principal component analysis. In particular, the role of direct and water-mediated
contacts in sculpting the landscape is elaborated. Another approach to studying the native state ensemble is
based on choosing high-resolution order parameters for computing one- or two-dimensional free energy surfaces.
We demonstrate that 2D free energy surfaces provide rich thermodynamic and kinetic information about the
native state ensemble. Brownian dynamics simulations on such a surface indicate that protein conformational
dynamics is weakly activated. Finally, we briefly discuss implicit and coarse-grained protein models and
emphasize the solvent role in determining native state structure and dynamics.

1. Introduction

Molecular biology has shown time and again that protein
function is intrinsically connected to structure, dynamics, and
thermodynamics. Rationalizing protein dynamics and its con-
nection to the protein energy landscape is not only an important
biological problem, but also presents extremely interesting
physicochemical challenges. To provide context and a broader
view for our discussion, we will briefly overview the celebrated
protein folding problem1–12 and then shift to computational
methods used in the description of the native state.

Proteins are polymer chains consisting of amino acid residues
connected by covalent peptide bonds. Many of the principles
of polymer physics are directly applicable to the study of
proteins. One of the most interesting thermodynamic properties
of polymer chains is the “coil-globule” transition,13 which, as
with all phase transitions, is directed by the competition of
energy and entropy: if the energy of attractive intramolecular
interactions overcomes the conformational entropy (as occurs
in a poor solvent/low temperature), the chain precipitates into
a compact globular state, with the volume fraction of polymer
on the order of unity. In the opposite case (good solvent/high
temperature), entropy dominates and a coil state is preferred.
This state tends to possess extreme fluctuations and the volume
fraction of the polymer tends to zero in the thermodynamic limit
(Fp ∼ N-R where N is the degree of polymerization and R > 0).

The coil-globule transition in proteins14,15 is more interesting
than in homopolymers and random heteropolymers and has
special features, absent in both. This transition is accompanied
or followed by protein folding, during which the protein chain
adopts a specific tertiary structure. The tertiary structure differs
from the secondary structure in that it dictates the features on
the scale of the whole chain, whereas secondary structures like
R-helices and �-strands are locally determined by the sequence.
A typical protein sequence is exquisitely built in order to provide
a unique native state that is both lowest in energy and
biologically functional.16,17 While this is not a single static state
in reality,18,19 for the moment we shall speak in approxi-
mate terms because the native ensemble is significantly smaller
than that of a homopolymer globule. The sequence also ensures
that the native state is kinetically accessible from the unfolded
state. These features are essential to meet the demands of the
biological role of proteins. Upon examining the phase space
available to a protein polymer chain (depicted in Figure 1as a
schematic representation of the funneled landscape), several
distinct and fundamentally important regions may be identified
as a function of solvent quality. The “coil” region is the most
disordered, though still not as random as a typical homopolymer
coil.20 Since there is no clearly defined structure, function should
not be possible according to the traditional “structure-function”
paradigm. Despite this, some disordered proteins have been
shown to be functional,21,22 though discussion of the noncompact
states observed in these proteins is beyond the scope of this
review. In the coil state, flickering secondary structure elements
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reconfigure on the time scale of about 1 ns,23 but to what extent
the residual structure exists is still ambiguous.24 In any case,
the coil state is dominated by entropy. Even without consider-
ing the solvent, the conformational entropy of the chain is much
more significant than the volume interactions, analogous to
gases. In fact, Rouse-Zimm theory gives an appropriate
description of the dynamics,25 taking into account viscous
friction between the solvent and monomer units and hydrody-
namic interactions.

As the solvent quality decreases (possibly as a result of a
temperature decrease) the protein undergoes a transition to the
molten globule region26–31 (Figure 1). In a classical polymer
science, this is already a compact state, but in protein folding
terms it is an ensemble of rather general intermediate states32–36

which are still considered unfolded and highly dynamic. Some
of them contain a substantial amount of secondary helical
structure. Varying degrees of helicity were observed,37,38 as well
as some tertiary structure.27,33,39–41 An extension of the analogy
above would be to parallel the dynamics of a molten globule to
that of liquids.42 Again the structure-function paradigm main-
tains that there should be no functionality in this state, as there

is no well-defined structure. However, exceptions have been
found recently, which we will discuss in this paper.

When the solvent quality decreases even further, the protein
starts to feel the ruggedness of its own energy landscape. The
protein spends more time in the minima of the landscape, rather
than in saddle points, and the barriers between the minima
become harder to overcome. Such dynamics is similar to that
of a supercooled liquid.43 Thermodynamically, it is still a molten
globule, but in a real experiment, some conformational states
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Figure 1. A funneled energy landscape of a typical protein depicting
the major structural and dynamical regimes. The order parameter Q,
characterizing similarity of the given conformation to the native
structure, increases from 0 to 1 as the protein descends into the native
state of the funnel.
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may remain unexplored despite being thermodynamically favor-
able, because of the finite run time: the mean first passage time
for crossing a barrier of height E is proportional to exp(E/kT)
according to Arrhenius relation.

At some temperature Tg, the barriers between the minima
become insurmountable on any feasible experimental time scale.
The dynamics of a protein whose temperature has reached Tg,
mark the transition to the region of glassy states.44,45 In this
regime, a protein gets trapped in a single, random conformational
basin and if these states are not functional, the protein will not
be able to perform its required role. Therefore, for many
naturally evolved proteins it is unsurprising that Tg is well below
room temperature.5,9,45,46

Typically, proteins undergo folding from a molten globule
to what is called the natiVe state at folding temperature (Tf)
which is well above Tg.3,5,47–49 To continue our analogy, the
native state can be compared to crystalline states,42,50 as the
conformational entropy is much lower and the effective energy
of contacts plays the dominant role. However, here the parallel
ends, since the native state possesses far more than just
vibrational entropy.4–6,9,18,51 As an aside for readers new to the
topic, since the first protein models did not possess an explicit
solvent, hydrophobic interactions, though substantially entropic
in origin, are conventionally sorted into the energetics category.
We follow the convention here, thus, when referring to the
“energy” of contacts or “energy” landscape, we actually mean
free energy (where fast solvent degrees of freedom are integrated
out).

Though the focus of our work is on the energy landscape of
the native state, it would be prudent to briefly describe how a
protein arrives at this state. In 1969 Levinthal postulated a
thought experiment which proved that proteins could not
possibly find the thermodynamically stable functional state via
unbiased random exploration of their phase spaces.1,9 Consider
a 100 residue protein, where each residue may adopt one of
three alternative states, then the total number of possible
conformations available to that protein may be roughly estimated
as 3100 ≈ 1047. If we restrict conformational transitions to occur
no faster than once per picosecond (10-12 sec), it would take
roughly 1028 years to complete an exhaustive search, signifi-
cantly longer than the age of the universe. A protein possessing
such an unbiased energy landscape could not reach a functional
conformation within a biologically relevant time scale, therefore,
there must be a defining feature of their energy landscape that
circumvents this problem. This realization lead to the insight
that the energy landscape must be biased in favor of the native
state such that folding through an exhaustive search of the
protein’s phase space does not occur.52 Unlike random het-
eropolymers, proteins possess a funneled energy landscape
which drives folding to the native state4–6,9,53–55(Figure 1).
Evolution has carefully selected protein sequences which are
able to quickly fold to their native state upon translation. This
means in general, organization of a protein’s energy landscape
is dominated by the native state.56 However, a free energy bias
alone is not enough to guarantee consistent successful folding.
If the landscape is funneled but very rugged, trapping still may
prevent folding on reasonable time scales. This brings us to
another very important, feature of the protein energy landscape.
However, in order to discuss this we must first introduce the
concept of frustration.

Frustration, simply put, is the inability to simultaneously
achieve favorable interaction energies between all contacts.
Frustration leads to an energy landscape with many local minima
separated by barriers. Such a situation is also encountered in

spin glasses, an elegant example given by Bryngelson et al.6

Consider a system in which magnetic spins are arranged
randomly. Interactions between spins may be either ferromag-
netic or antiferromagnetic and occur at an equal frequency.
Frustration arises out of a competition between these two
mutually exclusive tendencies. The contacts between monomer
units of a heteropolymer can also be energetically either
favorable or unfavorable, and this analogy allows researchers
to use methods and models developed for glasses to study
proteins.

Proteins have evolved to minimize the frustration in their
native states, in order to keep the funneled landscape as smooth
as possible to minimize trapping in nonfunctional conforma-
tions.52 Despite the kinetic need for a minimally frustrated
landscape, some residual frustration remains at the bottom of
the funnel.57,58 The energy landscape of the native basin is
degenerate with multiple ways to achieve low effective energy
structures. Conceptualizing the native state as an ensemble of
states rather than one single state was a significant advancement
in protein science. This breakthrough in the description of the
native state occurred over 3 decades ago when Austin et al.
conducted low temperature flash photolysis measurements,
providing experimental evidence for the existence of substates
within the native landscape.59 In this study, an anomalous
myoglobin-ligand binding energy spectrum led the researchers
to conclude that myoglobin must possess a multitude of
conformational states with differing activation energies. Sub-
sequent experiments by Ansari et al. suggested that the protein
energy landscape is organized hierarchically with various states
divided into substates which themselves may be subsequently
divided further into substates ad nauseam.4,18,60

Understanding the dynamics of a protein in the native state
is a separate very interesting problem with profound biological
applications. Examples include fluorescence intermittency61 and
allosteric regulation.62 The first molecular dynamics simulation
of a protein suggested that protein molecules are more fluid
than originally expected.63 This fluidity provides a protein with
the means to transition between conformational states through
thermal and solvent fluctuations. There exist diverse viewpoints
on the nature of dynamical transitions between the native
substates. Some techniques, such as normal-mode analysis
(NMA), treat proteins as solids possessing vibrations and
phonons.64–66 This approach works well in some cases and has
provided significant insight into protein dynamics. However, it
has the significant drawback that it is difficult to reconcile with
the multitude of conformational minima and single minimum
anharmonicities. This technique should be contrasted with
principal component analysis (PCA), in which anharmonicities
are retained.67 Work has also been done on the related field of
instantaneous normal-mode analysis to account for the existence
of multiple minima in the energy landscape. This technique uses
the differing time scales of thermal solvent motion and solute
vibrations to assume the separability of the Hamiltonian into
individual solvent and solute Hamiltonians in addition to a third
Hamiltonian which describes their interaction. The basics of
this technique have been reviewed by Schmitz et al.:68 briefly,
MD simulations are used to generate a collection of solvent
cages which are then frozen for subsequent NMA, and anhar-
monicites can be introduced through quantum corrections. While
this technique can be quite useful in some systems, and has
even been applied to peptides,69–71 translation of the work to
proteins is complicated by the very large number of local
minima in the energy landscape. Another viewpoint is to
imagine activated hopping between different conformations

8802 J. Phys. Chem. B, Vol. 113, No. 26, 2009 Zhuravlev et al.
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separated by energy barriers.72,73 This can be paralleled to the
dynamics of a supercooled liquid. Yet another possibility is that
protein’s motion is similar to flow of a normal liquid such that
the system spends most of the time in saddle points rather than
in minima of the energy landscape. There have been indications
that activated, or even glassy dynamics, are more relevant to
proteins, at least at low temperatures.3,4,74

Knowledge of the existence of a rugged native energy
landscape, that is organized in hierarchical tiers, has inspired
extensive research both experimentally and theoretically to
further our understanding of its nature. Complete characteriza-
tion of a protein’s native landscape is often not feasible with
modern computer technology but it is still possible to gain
important insight with various techniques. Significant work has
been done to characterize the energy landscape for peptides
(mainly via models with implicit solvent), using disconnectivity
graphs (DG)73,75 which provide important insight into finer scale
splittings of similar structural clusters and provide information
about the transition barrier heights. A different approach to
modeling the energy landscape of a protein emerges from graph
theory and the analysis of complex systems such as those applied
to World-Wide Web.76 In this technique, molecular dynamics
simulations are conducted and conformations are characterized
by secondary structural elements. These conformations then
become nodes on the network graph while transitions between
different conformations become the links. A detailed, hierarchi-
cal network emerges which provides significant insight into the
nature of the energy landscape. Another approach is to compute
a low-dimensional map of the energy landscape. A typical result
is a one- or two-dimensional free energy map of the system
which can be used to study structural clustering and kinetics of
conformational transitions.

The structure of the remaining sections of this article are
outlined as follows. In section 2 we discuss a recent challenge
to the protein structure-function paradigm in which activity
was observed in a disordered protein. In section 3 we describe
our recent work in elucidating a hierarchical landscape of a small
globular protein derived from a combination of all atom
molecular dynamics (MD) and PCA techniques. We demonstrate
that the emergent hierarchy displayed arises from residual
frustration and results in a differentiation between inter-residue
contacts. In section 4 we discuss recent work in our laboratory
related to the development of a technique for constructing high-
resolution free energy surfaces (FES) for the native basin. We
constructed a FES for a small protein, Trp-cage, and used it to
study the kinetics of transition between two native-like struc-
tures, finding borderline behavior between activated and fluidlike
dynamics. In section 5 we briefly discuss the application of FES
techniques to the optimization of coarse grained force fields.
In section 6 we emphasize the important role of water in
sculpting the native ensemble.

2. Activity in the Disordered State

The classical view of enzymatic catalysis, pioneered by
Haldane and Pauling, is based on the selective stabilization of
reaction’s transition state, which lowers the reaction barrier.77,78

Design of transition state analogues has validated this approach
for a large number of enzymes.79–81 A well-defined protein
structure is needed for this selective recognition, to achieve steric
and electrostatic complementarity with the transition state. In
this light, the recent discovery of catalytic activity by a protein
in the molten globule state has been unexpected,82 challenging
the static picture of an enzyme. Although structural dynamics
of the active site83 and the protein as a whole18,62,78,84,85 were

well appreciated in the context of enzymatic catalysis, structural
motions in the molten globule are on much larger scales,
corresponding to orders of magnitude higher conformational
entropy. Thus, the traditional structure-function paradigm needs
to be extended, to account for large-scale conformational
dynamics.86 Energy landscape ideas, initially developed to
describe protein folding,3,5,6,9 provide a convenient starting point
for such extension.22

Hilvert and co-workers mutated a homodimeric enzyme into
a highly active monomer.82 This mutant behaves like a molten
globule, with an ensemble of rapidly interconverting compact
structures, and yet provides almost the same catalytic power as
the wild-type enzyme in the native state. This raises the question
of how enzymatic activity is possible for a disordered protein.
In this case it seems that an active three-dimensional structure,
while present, is disguised among a multitude of other structures
that the molten globule ensemble explores.86 Upon binding of
the transition state analogue (TSA), however, the enzyme
becomes stabilized in its active conformation, adopting a more
well-defined structure.82 This is similar to the way binding and
folding funnels are coupled for many disordered signaling and
transcriptional proteins, that fold only upon finding their binding
partner.22,87–89 The folding landscape must still retain an overall
smooth funneled shape, as it would otherwise result in the
problems similar to the Levinthal paradoxsthe catalytically
competent conformations need to be visited on the experimental
time scale. However, while protein’s energy landscape is
funneled, with the active structure presumably residing at the
bottom, the funnel is not deep enough to provide the native
state with the overwhelming energetic stability typical of many
other globular proteins.22,86 In this case, the energy landscape
being weakly funneled in the absence of the partner (Figure 2;
middle panel), is deepened upon binding to stabilize the native
conformation.22 Apart from the binding induced folding, a
transient excitation to a native-like functional conformation
capable of catalysis may be another reason for observed
enzymatic activity.86 Even if the enzymatically active states are
visited infrequently, the enormous acceleration of a chemical
reaction by these states would still result in significant enzymatic
activity by a molten globule.

Roca et al. explored both the mutant monomer and wild-
type dimer computationally, through the construction of a 2D
free energy surface, using the radius of gyration and contact
order as coordinates.90 Upon binding of the transition state
analogue (TSA) the minimum region (a basin) in the free energy
surface becomes more confined for both dimer and monomer,
though this effect was more pronounced in the latter case. Thus,
the weakly funneled landscape of the monomeric molten globule
is “pulled down” by the TSA binding. By calculating empirical
valence bond surfaces from X-ray and NMR structures of the
wild-type dimer and the mutant monomer, respectively, bound
to TSA, Warshel and co-workers computed the heights of the
activation barriers, which are directly connected to the catalytic
power, and these were shown to be nearly identical between
forms.90 Picking the structures from the minima on the calculated
FES, they repeated the procedure and found similar barrier
heights for the monomer, but for the dimer they were higher.
Therefore, unlike the dimer, the monomer also has catalytic
configurations in the minima of the FES.90 The Roca et al. work
demonstrates the effectiveness and usefulness of a free energy
surface approach for studying functional dynamics of a disor-
dered protein.

There may be reasons for a protein to evolve into an active
molten globule: rapid turnover, faster binding kinetics, and
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functional promiscuity.89 Molten globule occupies larger effec-
tive volume, which leads to an increase in interaction cross-
section with the surrounding molecules. This may be used to
increase the association rate via a “fly-casting” mechanism,91

when the binding and folding funnels are coupled.22 Further-
more, molten globular proteins are quickly degraded by the
proteasome, allowing finer temporal control over the catalytic
process. This would be useful if only a short burst of catalytic
activity is desired, for example, in signal transduction cascades.86

From a practical viewpoint, it is extremely difficult to either
predict or experimentally determine what specific functional role
is played by a particular disordered protein, because the molten
globule dynamics efficiently conceal which particular conforma-
tion is the active one.86 These difficulties are clearly exemplified
by a current lack of understanding of the function of R-sy-
nuclein, a disordered protein that is implicated in Parkinson’s
disease.92

Thus, recent works have posed a question of whether or not
the structure-function paradigm is too limited and have
suggested to expand it to an energy landscape-function
paradigm. Although the functionally competent structures may
be transient, the protein can perform catalysis as long as these
states are visited frequently enough during conformational
dynamics on protein’s energy landscape. Stabilization of the
functional state upon substrate or binding partner binding
(“pulling down” of the funnel)22,86 seems to be another
ubiquitous strategy to confer function on disordered proteins.

3. Kinetic Hierarchy Elucidated by PCA

As temperature decreases, the molten globule folds to the
natiVe state. The native state, however, is still very dynamic
and possesses measurable entropy due to residual frustration.
This residual frustration splits the native state into an ensemble
of substates, which are organized in hierarchical tiers both
kinetically and energetically. Often, the investigation of the
molten globule is focused more on the thermodynamics, with
low-resolution order parameters such as radius of gyration. The
natiVe state, however, must be studied from a more precise
structural perspective since specific structures are responsible
for determining functional activity, such as enzymatic catalysis.

Much work has been accomplished toward the application
of principal component analysis to protein systems. Early work
by Amadei et al. laid the foundations67 and subsequently,
significant additional work followed toward characterizing
molecular dynamics trajectories of peptides. Garcı́a et al. used
PCA to create free-energy surface maps of a small peptide as a
function of temperature using the first two PCs.93 Becker

evaluated the effectiveness of PCA at capturing peptide dynam-
ics and also used it to create energy surfaces.94 In a later work,
Levy and Becker used a PCA variant in conjunction with
disconnectivity graph analysis to illustrate the effects of
conformational constraints on the peptide energy landscape.95

A paper by Altis et al. suggested that dihedral angles provide
significant advantages over Cartesian coordinates in the con-
struction of energy landscapes.96 Recently, Hegger examined
the complexity of peptide folding and compared the dimen-
sionality of an energy landscape obtained by PCA to the
dimensionality of the dynamics obtained through Lyapunov
analysis.97 Our work can be seen as an extension of these earlier
efforts in that we used PCA to characterize the latent kinetic
hierarchy of a globular protein (eglin c) from MD simulations
and elucidate the way direct and water-mediated interactions
sculpt this hierarchy. To achieve these goals, we conducted a
long 336 ns MD simulation of the protein in explicit solvent
and employed dihedral angle principal component analysis to
deconvolute essential degrees of freedom and reduce the
dimensionality of the system.

PCA is a powerful linear orthogonal technique used to aid
in the comprehension of complex multidimensional systems,
such as a protein, by reducing the phase space while retaining
essential degrees of freedom67 and accounting for anharmonici-
ties. PCA operates through the diagonalization of a covariance
matrix of the coordinate fluctuations of the system. The
eigenvectors obtained by this diagonalization are the principal
components which are sorted by decreasing eigenvalues. The
eigenvalues represent the variance of the data along each
eigenvector, meaning that the first principal component retains
the greatest variance of the data followed by the second and so
on. It has been shown that the majority of the degrees of freedom
in a full multidimensional hyperspace of a protein’s dynamics
are uninteresting and contain no essential information.67 There-
fore, to simplify our problem we identified the essential degrees
of freedom by projecting our MD trajectory into PC space and
histogramming that data. Data projected into a PC which only
characterizes fluctuations within a single state act like a
harmonic oscillator and will appear as a single Gaussian
distribution.67 On the other hand, data projected onto one of
the PCs belonging to the essential subspace would appear as a
multipeaked distribution with different peaks representing the
states accessible within that PC. Thus, the essential degrees of
freedom were identified by isolating the non-Gaussian forming
PCs and eliminating Gaussian forming PCs. Our results showed
that over the course of the 336 ns simulation, the first four PCs
revealed highly non-Gaussian and the next seven revealed

Figure 2. The interplay between protein’s folding and functional landscapes. (Left) Energy landscapes of many globular proteins are thought to
be funneled, such that the native state is both a thermodynamic global minimum and is also kinetically accessible. (Center) Energy landscapes of
many disordered proteins are likely organized around a special state, characterized by a weakly funneled landscape. However, the driving force for
folding is reduced, allowing the protein to remain disordered. Interactions with specific targets create additional favorable contacts, deepening the
funnel and driving subsequent folding. Transient population of catalytically competent states, near the funnel’s bottom, may allow for efficient
catalysis. (Right) A random energy landscape is shown, where the search for a specific functionally competent conformation is extremely inefficient.

8804 J. Phys. Chem. B, Vol. 113, No. 26, 2009 Zhuravlev et al.
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slightly non-Gaussian distributions of trajectory data, suggesting
eglin c is sufficiently described in, at most, an eleven dimen-
sional manifold or roughly 3% of the characterized degrees of
freedom. This result is important because it reassures us that it
is indeed possible to describe protein’s native basin with a
manageable number of collective degrees of freedom.

After establishing limits on the essential phase space, we
proceeded with a detailed characterization of the energy
landscape. Using a two-dimensional histogram of the trajectory
projected in the first two principal components we observed
the appearance of several densely populated regions. These
regions were considered basins in the energy landscape as there
is a spontaneous tendency for the system to adopt the structural
conformations associated with those basins. While the totality
of the protein dynamics was not restricted to reside solely within
these basins, they did represent a very significant portion of
the native landscape. With our knowledge of the energy
landscape from the first two degrees of freedom, it was possible
to extract further detail by examining each basin individually.
Trajectory data residing within a single basin was then plotted
as a two-dimensional histogram in the second and third PCs
(thus, we zoomed into the basin using the next set of PCA
dimensions). By doing this we further identified basins in the
energy landscape which were eclipsed when viewed from the
first two PCs as shown in Figure 3. This procedure may be
repeated in an iterative fashion for all subsequent essential
degrees of freedom. To the best of our knowledge this technique
has not been used prior to this work. The result of this is the
identification of a hierarchy of states (Figure 4) in the energy
landscape whose structural significances may be determined by
sampling the individual conformations residing within each
basin.

Structural sampling from the observed basins provided
valuable information about the protein’s native dynamics. At a
coarse visual level, we used the collection of conformations in
each sampling to create an average structure, displaying the
characteristic features of that basin. The most significant large
scale structural rearrangements occurred between basins obtained
from the histogram of the first two principal components.
Differentiation observed from the splitting of subsequent PCs
became increasingly subtle. For a more substantive description
of the significance of the landscape hierarchy we examined the
inter-residue contacts present in each basin. We found that basin
splitting is accompanied by a change in intramolecular contacts
formed within the protein as depicted in Figure 5. The observed
landscape hierarchy was thus characterized by a divergence of

intermolecular contacts between basins. Subordinate basins
retained the defining features of their superiors while further
differentiating among themselves, showing ultrametric features
characteristic of spin glasses.99,100 Interestingly, we extended
our search for divergent contacts to include water-mediated
interactions and found that these interactions also played an
important role in basin definition. This observation is consistent
with prior works on the way water-mediated interactions guide
protein folding and stabilize native state architectures.101–104

The general techniques used in this work are useful for
investigating other protein systems. Currently we are applying
this technique to investigate the dynamics of a yeast nucleosome
in order to determine if it undergoes any significant conforma-
tional changes. In summary, our results showed that competition
between direct and water-mediated inter-residue contacts sculpts
the landscape and dynamics of the native state and exemplifies
the residual frustration of proteins’ native ensembles.

4. Conformational Kinetics on Low-Dimensional Free
Energy Surfaces

In Wu et al. we approached the investigation of protein native
dynamics by studying the underlying energy landscape.105 Even
after integrating the solvent degrees of freedom, this (free)
energy landscape is still a function of a multitude of confor-
mational variables.106 A drastic reduction of this remaining phase
space is necessary to achieve a physically meaningful description
of protein’s conformational dynamics. We used two collective
coordinates to project the high-dimensional landscape into a two-
dimensional (2D) free energy surface (FES). Constructing 2D
FESs to describe folding is a commonly used technique;107–109

however, the native ensemble at the bottom of the folding funnel
consists of conformations that are very similar to each other
from both classical polymer and protein folding perspectives.
Therefore, it was imperative that we carefully choose coordinates
with sufficiently high structural resolution. A suitable coordinate
commonly applied to folding problems is defined with respect
to the native conformation. Specifically, it is the fraction of
native contacts between atoms, or residues. This coordinate has
been denoted Q and possesses a range between 1 (all the contacts
are the same as in native state) and 0 (no native contacts).110 Q
has been shown to correlate with the strata of the folding funnel.5

For a molten globule, a typical Q value is about 0.3.5 In our
work, we chose two slightly different conformations from the
bottom of the funnel and defined two Qs with respect to each
structure. The use of a 1D collective coordinate such as Q is
highly degenerate in that a single Q value represents a large
collection of states residing on a hypersphere. Thus the use of
two collective coordinates significantly reduces this degeneracy
by limiting the space to the ring which accounts for the overlap
of the two hyperspheres. In other words, this choice of
coordinates unfurls the usual 1D free energy curve to a 2D
surface (Figure 6a), where the latter may show saddle points
and other interesting features. In terms of studying kinetics of
a transition between two reference structures, one important
question is whether a dominant pathway connects these struc-
tures or many dissimilar pathways contribute with significant
statistical weights.

We applied this technique to the native state of Trp-cage, a
20 residue peptide, using two most dissimilar conformation
among structures reported by an NMR-study.111,112 Since both
of these conformations are native-like, with a Q between them
being about 0.9, the resulting 2D free energy surface shows
high resolution details of the native state ensemble. Though not
done in this work, another possible choice of the reference

Figure 3. We isolated each basin in our 2-D PC landscapes and
projected them into the next set of PC’s. This had the effect of further
separating the data into more basins which themselves were each
isolated and projected in subsequent PCs. At the end, we arrived at a
basin whose structure can be well characterized.
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conformations is to take structures from the different basins
obtained with a PCA technique developed by Materese et al.98

Using the weighted histogram analysis method (WHAM),113 a
modification of umbrella sampling, which is a popular technique
for calculating free energy differences in computer simulations,
we have built a 2D FES in terms of two Q-values defined with
respect to each NMR reference states using all-atom CHARMM
force-field with explicit solvent114 (see Figure 6a).

This FES allowed us to investigate kinetic questions, prima-
rily, whether the dynamics of Trp-cage at room temperature is

activated (the system spends most time in the minima of the
energy landscape waiting for a fluctuation to throw it over the
barrier to another minimum), or whether it is similar to a regular
diffusional flow of a liquid (when the time is mostly spent in
the saddle points of the energy landscape). Seeking a first
passage time distribution of the transition from one of the
reference conformation to another, we ran damped Brownian
dynamics on the 2D FES115 at several different temperatures.
These studies suggested that ambient temperature is in the region
of the crossover between the two dynamical regimes. Figure 7
shows the dependence of the mean first passage (MFPT) time
on the Brownian dynamics temperature. At higher temperatures,
the MFPT dependence is characteristic of diffusion in confined
space with τj ∼ D-1 ∼ T-1, while at lower temperatures it would
be Arrhenius-like with τj ∼ exp(EA/(kT)). The former dependence
follows from the discreteness of the spectrum of diffusion
equation inside a confined space, where at long times the term
with the highest eigenvalue dominates the solution. The
exponent of this term is proportional to the diffusion coefficient,
and the latter is proportional to temperature from the Einstein-
Smoluchowski relation.

The width of the FPT-distribution, which is another way to
identify the dynamical regime, also shows borderline behavior:
the distributions for three temperatures are given in Figure 6c
with their coefficients of variation (standard-deviation-to-mean
ratios) denoted as CV. When CV < 1 the distribution may be
considered narrow (signature of the dominant pathway and
Arrhenius behavior), while with CV > 1 it may be considered

Figure 4. Tree of basin hierarchy is shown. Branches terminated before the fifth level could be continued, however, no further separation of those
branches was found within the range of PCs investigated.

Figure 5. Upon basin splitting, significant changes in inter-residue
contacts would typically occur. This figure shows a representative
divergence of contacts between two basins. Structures from basins 1.1
and 1.4, shown here, display an arginine-glutamic acid salt bridge
broken.
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broad (signature of many pathways). At room temperature CV
) 1.09 which hints at borderline behavior. Furthermore, one
may look at the BD trajectories on the FES and notice the lack
of any dominant pathway, which is a characteristic of Arrhenius-

type processes. Figure 6a shows two trajectories at 298 K with
one taken from the peak of FPT-distribution (white) and the
other taken from the shoulder (magenta). About half of the
trajectories fall into the shoulder, so there is no dominant
pathway, hence, no Arrhenius behavior. However, visual
analysis of the trajectories reveals some weak trapping in local
shallow minima (Figure 6b). Another method for analyzing
kinetics and its time scales is to fit survival curves (obtained
by integrating the FPT-distribution, in other words, the prob-
ability that the transition has not yet occurred at a given time)
to exponential, biexponential or stretched exponential functions.
This problem of single- and multiexponential behavior has been
discussed in the context of both regular (with a barrier) and
downhill protein folding.116,117 In our case, the curve can be fit
by a single exponential, especially at long time scales. At long
time scales, such behavior might be expected for diffusion in a
confined phase space. However, a somewhat better fit is
achieved through fitting a double exponential, representative of
dynamical behaviors discussed in the context of barrierless, or
downhill protein folding where the shorter time scale is called
“speed limit”.116,118 Thus, constructing 2D FESs provides many
useful insights about the native dynamics, revealing it at very
high resolution.

As useful as two- (or higher) dimensional FESs may be,
building them requires a massive computational effort. For some
purposes, just knowing the free energy difference between two
native-like conformations will suffice. For instance, certain NMR
structural experiments provide distance constraints between the
atoms as an output.119 Afterward, these constraints are used
within simple force-fields to obtain structures that are deposited
as NMR-structures in PDB. Typically, a given set of distance
constraints produces many structures, thus, ranking them by free
energies would yield a much clearer picture of the optimized
structures. In yet another example, measuring the free energy
differences between PCA-basins98 should corroborate the con-
structed hierarchy, showing the assumed correspondence be-
tween kinetic and energetic hierarchies. Lastly, knowing a set
of free energy differences between many conformations, one
can construct a master equation to describe the system or perhaps
tune a force-field. A problem with calculating free energies in
computer simulations is the need to sample the whole phase
space including the rarely visited regions. In case of an explicit
solvent force field, the problem is exacerbated by a large number
of the solvent microstates. Additionally, techniques like umbrella
sampling that treat this problem by introducing and then
correcting for a biasing potential require a meaningful collective
coordinate, or order parameter, that will discriminate the two
states whose free energy difference is measured (lets call them
A and B). Identifying such a coordinate is a nontrivial task.
For example, the obvious ∆Q ) QA - QB coordinate tends to
group together very dissimilar conformations in the vicinity of
transition end points, that, in turn, may result in serious artifacts.
We have recently found an appropriate 1D coordinate which is
compact near the end points A and B, solving the degeneracy
problem:105,120

�(QA, QB) ) exp(- (QA - QAB)2 + (QB - 1)2

(1 - QAB)F2 ) -

exp(- (QA - QAB)2 + (QB - 1)2

(1 - QAB)F2 ) (4.1)

In addition, the ∆Q coordinate is nearly impossible to
equilibrate in windows where ∆Q ≈ 0, because all unfolded
states may need to be sampled. To circumvent this problem,

Figure 6. Brownian dynamics of the transition between states
corresponding to NMR structures numbered 1 and 37. (a) Two sample
trajectories: one (white) is from the peak of FPT distribution in panel
c, the other one (magenta) is from the shoulder; (b) Part of the surface
with trajectory shown in higher resolution revealing finer features of
the surface and their influence on the trajectory; (c) First passage time
(FPT) distributions for conformational transition between 1 and 37.
FPTs were computed at two additional temperatures to obtain the
corresponding coefficients of variation, to provide reference for
categorizing the nature of the dynamical regime at room temperature.

Figure 7. Arrhenius plot shows the dependence of the mean first
passage time with temperature for the conformational transition from
“37” to “1” on fixed FES (computed at 282 K), where the FES is
temperature-independent. The inset zooms into higher temperature
region using a semireciprocal plot. Two regimes are clearly seen:
exponential at low temperatures and linear at high temperatures. The
ambient temperature (282 K) result is near the crossover.
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we introduced a confining tube in phase space, that allows for
fast equilibration.120 We found that this 1D technique allows
free energy differences to be measured in explicit solvent
simulations (see Figure 8): the difference in the results from
2D FES and the 1D technique is less than five percent with a
10-fold reduction in computation time.120

5. Coarse-Grained Models That Would Describe the
Native State Organization

To explore the native state at a resolution as high as in the
methods described above, computer simulation models must
include explicit solvent. However, all-atom explicit solvent
simulations are unable to capture slow (microsecond to second)
processes in proteins, or handle large systems such as chromatin.
Coarse-grained and implicit solvent models, which allow
researchers to overcome some of the sampling and size
problems, have been used to simulate dynamics of proteins, and
also other hetero- and homopolymers. However, it is not clear
if these models are fully adequate for describing the native state
dynamics of globular proteins. One of the current goals in
implicit solvent and coarse-grained force field development is
to obtain a more consistent formulation that reproduces either
all-atom explicit solvent simulations or experiments. In this
regard, measuring free energy differences and computing FESs
seems to be a promising approach for constructing or validating
force fields without explicit solvent. If a CG model reproduces
the hierarchical organization of the protein energy landscape,
in terms of free energies, and kinetics, then it has captured
perhaps the most significant essential properties of protein
dynamics.

To develop a framework for systematically comparing energy
landscapes obtained from explicit and implicit solvent models,
in Wu et al.105 we used a very simplistic model, that we called
“dielectric solvent model” (DSM): CHARMM force-field114 with
water molecules removed and all the electrostatic terms in the
Hamiltonian divided by dielectric constant of ε ) 80. With DSM
we have constructed the same 2D FES with respect to two
Q-coordinates described in the previous section. Surprisingly,
the surfaces from DSM and explicit solvent model were very
similar in the region of very high Q values (Figure 9). The
difference between the explicit solvent FES and the DSM FES
given in Figure 10 demonstrates this more clearly. As Q values
decrease more significant differences appear between explicit
and DSM FESs, highlighting the role of the hydrophobic effect,
which is completely absent in the DSM simulations. The 2D
FES differences are asymmetric with respect to the diagonal

line, suggesting that the hydrophobic effect favors structures
on one part of the surface. To explore this suggestion, we picked
several structures from different sides of the diagonal line, (Q1

) 0.90, Q37 ) 0.81) and (Q1 ) 0.77, Q37 ) 0.76), and calculated
the solvent accessible surface areas (SASA) for each residue
(see Table 1). The SASA of the hydrophobic core for the first
region turned out to be about 10% smaller which provides
further support that the asymmetric shape of the difference FES
is hydrophobic in origin.

We also used a 1D coordinate technique mentioned in
previous section which shows similar results (see Figure 8). This
helps us to better understand the role of water in the native
dynamics. We will further discuss the role of water in the next
section and discuss how to capture much of it with a simple
modification of the DSM, for example using the generalized
Born model.109 It is quite possible that a free energy surface
calculated using GBSA Hamiltonian109 will be even more similar
to that computed using explicit solvent. However, the effect of
structured water within proteins104 is difficult to capture with
simple implicit solvent models, and an approach with explicit,
many-body, water-mediated interaction potentials may be
needed.103

6. Role of Water

Water plays an extremely important role in both protein
folding and native dynamics.101,121–124 The hydrophobic effect
has been long known as the main driving force of protein
folding,125 and early heteropolymer models introduced it as a
pairwise attraction between the hydrophobic monomer units.126–129

As we mentioned in the introduction this tradition still has an
impact on contemporary terminology, like “energy” landscape,
which includes phenomena of entropic origin. As described
below, our results indicate that the true thermodynamic energy
landscape is much more rugged, than the landscapes studied in
protein folding theories. Long-range hydrophilic contacts are
also mediated by water103sintroducing a second well into the
pairwise polar-polar potential improves protein structure
prediction. This second well corresponds to a water-mediated
contact, a common occurrence in the native state.103,130 Overall,
water plays a significant role in smoothing the folding funnel
and guiding the folding of a protein to its native state.103 The
dynamics of the protein and its hydration shell are also
interconnected. In some cases protein motion is thought to be
slaved to solvent motion,59,131 as solvent effectively cages the
protein. The collective modes of these coupled protein and
solvent dynamics can be probed by terahertz (THz) spectros-
copy. A recent study suggests that the so-called protein
dynamical transitionsthe rapid increase of the dynamics around
200 Ksoriginates in the motions of water and interaction
between water and side-chains.132 THz spectroscopy has also
been used to study the effect of mutations on hydration shells
of the proteins, showing a case where pseudo-wild-type, λ6-85* ,
has a much more pronounced effect on long-distance solvation
water than a point mutant.133

In Materese et al.98 we have shown that the presence of water-
mediated contacts is correlated with hierarchical organization
of the PCA derived basins, which in turn is relevant to
hierarchical organization of the energy landscape. Water bridg-
ing was found to involve both side chain and backbone chemical
groups. These bridges were found both between residues close
enough to be considered in direct contact, and interactions at
longer range. The mediation of direct contacts often included
residues of like charge. We suggested that hydrogen bonding,
created by favorable water interactions diminishes repulsion

Figure 8. Free-energy profiles for dielectric solvent model and explicit
solvent model obtained by 1D-coordinate technique for measuring the
free energy difference between the end points (� ) 1 and � ) -1).
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between the like charged residues, allowing them to develop
such a contact. We observed changes in water mediated contacts
between different basins in our hierarchy suggesting that water
plays a role in shaping said hierarchy. Proteins have evolved in
aqueous environments and water can play important, specific,
microscopic roles as shown in this work. The importance of

water at specific sites in the protein structure underscores the
importance of explicit solvent in fine scale structure determi-
nation. For instance, recent experimental work points to the
importance of water in sculpting specific protein structure and
function. In Szep et al., the authors performed crystallographic
studies on wild type and mutant FKBP12 binding protein and
provided evidence that a specific crystallographic water, distal
to the binding pocket, plays a role in sculpting the shape of
that pocket.104 The authors suggested that despite the fact that
the binding pocket is greater than 8 Å away, this specific water
plays a key role on a network of interactions which shape it.

In Wu et al.105 we have built true thermodynamic energy and
entropy surfaces and explicitly shown that their ruggedness is
about 10 times greater than the free energy surface plotted in
terms of the parameters Q (see Figure 11). One way to
rationalize this is to focus on the solvent enthalpy-entropy
compensation, which is characteristic of the hydrophobic effect.
When a protein chain slowly fluctuates, the resulting fluctuations
of protein’s solvent accessible area lead to large changes in
entropy and enthalpy separately, but small changes in their
combination, free energy. Because of the time scale separation
between fast motions of the solvent and slower motions of the
protein chain, the latter does not feel all the ruggedness of
solvent’s energy landscapesthe protein moves in the thermally
averaged field of solvent motions.105

This confirms the smoothing role of water. Since this effect
is so important, its role must be reflected in computational
models in a more rigorous way than simple pairwise potentials.
Introduction of nonpairwise water has been shown to improve
structure prediction.103,130 Solvent accessible surface area seems
to be good starting approach to improving pairwise hydrophobic
potentials.105 As discussed above, when we compared a Hamil-
tonian that does not include water molecules explicitly, but
where water’s dielectric permittivity was taken into account,
the difference between the FES obtained from this simple model
and from explicit water Hamiltonian was attributed mostly to
the hydrophobic effect, and was correlated to the solvent
accessible surface area calculated for several randomly picked
states. In summary, water smoothes the landscape, guides folding
and takes part in hierarchical organization, particularly, through
both hydrophobic effect and water-mediated hydrophilic contacts.

Figure 9. (left) FES computed for the dielectric solvent model on the left. (Right) Explicit solvent FES. The lower basin is absent in the explicit
solvent FES. On the other hand, a number of barriers have disappeared in the DSM FES. The vicinities of the reference points 1 and 37 are very
similar between explicit and DSM FESs.

Figure 10. The difference between explicit solvent FES and DSM
FES (the former minus the latter). In the Qs j 0.95 region it mainly
represents the hydrophobic effect. The structures in the corners are taken
from the hydrophobically favorable and unfavorable regions. The
hydrophobic core is shown in van der Waals spheres, so that its opening
is visually noticeable.

TABLE 1: Solvent Accesible Surface Areas for Several
Structures (Å2) Indicated on Figure 10

(Q1, Q37) SASA of HP core SASA of the whole protein

model 1 955 1888

Hydrophobically Favorable Region
(0.907, 0.807) 975 1943
(0.905, 0.809) 975 1952
(0.901, 0.802) 969 1931
(0.900, 0.808) 964 1901

Hydrophobically Unfavorable Region
(0.774, 0.762) 1089 1936
(0.772, 0.763) 1120 1932
(0.773, 0.764) 1092 1920
(0.773, 0.761) 1038 2027
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7. Summary

The dynamics of the native state is varied and interesting
ranging from fluid diffusive behavior through an Arrhenius-
type activated behavior to glassy behavior. It is intrinsically
connected to protein’s energy landscape, the specific features
of which are manifest in hierarchical organization of kinet-
ics and free energy basins. Ruggedness of the energy landscape
and to what extent it is frustrated directly influences both folding
and native dynamics. Detailed knowledge of these properties
is important for studying the enzymatic catalysis, allosteric
switching, fluorescence intermittency, protein quakes, and other
phenomena.

In recent years, some NMR experimental techniques, includ-
ing nuclear Overhauser enhancement spectroscopy (NOESY),
ZZ-exchange spectroscopy, and some relaxations dispersion
experiments, have emerged which permit the investigation of
native dynamics on time scales that are also accessible to all-
atom computer simulations.134,135 The X-ray-diffraction crystal-
lography also yields the spatial distribution of atoms around
the average structure in addition to the average structure
itself.18,136 More recently, sub-Angstrom resolutions were achieved
providing some data on directionality of these atomic fluctua-
tions through anisotropic Debye-Waller factors.137 In addition,
Laue X-ray diffraction, although not universally applicable to
proteins,canmeasurethedynamiccomponentoftheDebye-Waller
factor separately from the component caused by lattice disor-
der.138 Paramagnetic relaxation enhancement measurements can
also capture transient events of protein’s dynamical ensemble
and access low-populated regions of the landscape.139,140

The energy landscape framework sets a common basis
between these experiments and simulations of the kind we
discuss here, and experimentalists are beginning to increasingly
use the energy landscape language.139,141 This is nicely illustrated
by a recent work by Romesberg et al.,141 where the dynamics
of molecular recognition of flourescein by antibodies was studied
with three-pulse photon echo peak shift (3PEPS) spectroscopy.
Observing distinct time scales in the dynamics of antibody-
fluorescein complexes, the authors interpreted it as a manifesta-
tion of hierarchical nature of the underlying energy landscape.
They have organized the observed motions into three classes
corresponding to three tiers: inertial (femtosecond, local motions
in microbasin), diffusive (picosecond, crossing small barriers
between neighboring substates), and large-scale conformational
changes. Different antibodies that have evolved to bind fluo-
rescein do so in a divergent fashion: some have a larger enthalpic
component to the binding, others smaller; and the entropic
component has been shown to vary in sign. Dynamically, the
proportion of motions different antibodies exhibit from different
tiers varies from an antibody to antibody. For example,
contribution of conformational dynamics (tier 3) may change
from ∼15% to ∼45%. Thus one can envision different energy
landscapes for such antibodies: one with steep barriers, so that
“elastic” behavior from inertial motions of tier 1 dominates the
dynamics, rendering the antibody rigid, or one with low barriers
and shallow traps on the landscape, leading to a more flexible
antibody.141 From simulations, one could compute the landscape
and compare the barriers with those predicted from experimental
interpretation. Additionally, simulations can be used to see how
the conformational entropy is correlated with the tiered com-
position of the dynamics, or to observe the various binding
mechanisms. In this light, using energy landscape ideas as the
language for discussing native state dynamics seems to be very
promising.

In this review we have highlighted several important and
powerful techniques for studying the organization and kinetics
of the native state. These include dihedral angles principal
component analysis with subsequent mapping of the dynamics
onto a tree; building free energy surfaces with subsequent
Brownian dynamics investigation of the surface properties; and
other free energy techniques. The PCA-based technique opens
perspectives for better understanding of the role of particular
inter-residue contacts, including water-mediated contacts and
finding the large scale topography of dynamical basins. Free
energy surfaces allow much less expensive study of the type of
dynamics and the time scale spectrum; both techniques may
contribute to the building of the coarse-grained models in a more
rigorous way. Much has been accomplished in the field of
protein folding over the past 2 decades and much progress has
been made in the study of the native state itself. Gaining further
deeper insights into the thermodynamics and kinetics of the
native state ensemble, including for proteins with weakly
funneled landscapes, is interesting from the viewpoint of
physical chemistry and is essential for understanding biological
function of many proteins.
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