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Simplified, yet accurate, coarse-grained models are needed to explore the behavior of complex biological
systems by means of Molecular Dynamics (MD) simulations, because many interesting processes occur at
long time scales and large length scales that are not amenable to studies by atomistic simulations. The aqueous
salt buffer provides an important contribution to the structure and function of biological molecules. While in
many simplified models both water and salt are treated as a continuous medium, it is often desirable to
describe mobile ions in an explicit manner. For example, the discrete nature of ions was shown to play a very
important role in their interaction with highly charged biomolecules, such as DNA. In this work, we have
derived an effective interaction potential for monovalent ions by systematically coarse-graining the all-atom
NaCl and KCl aqueous solutions at several different ionic concentrations. Our approach is based on explicitly
accounting for cross-correlations among various observables that constitute the compact basis set of the coarse-
grained Hamiltonian. Compactness of the Hamiltonian ensures computational efficiency of the optimization
procedure. In addition, it allows us to accurately reproduce many-body effects, in contrast with many existing
algorithms. The resulting Hamiltonian produced ionic distributions that are virtually identical to those obtained
in atomistic simulations with explicit water, capturing short-range hydration effects. Our coarse-grained model
of monovalent electrolyte solutions allows the incorporation of ions into complex coarse-grained biomolecular
simulations, where both electrostatic and short-range hydration effects must be taken into account.

Introduction

Because aqueous salt environments are crucially important
in determining the structure and function of all biological
molecules and processes, they are often studied by means of
all-atom Molecular Dynamics (MD) simulations. However, the
computational cost of treating water and the mobile ions in an
explicit way significantly limits the applicability of all-atom MD
simulations to relatively small molecular systems (∼105 atoms)
evolving over short time scales (∼100 ns). In contrast, many
biophysical phenomena occur at much larger length scales and
longer time scales. When solvent and ions are included
explicitly, simulation of many biomolecular structures, such as
chromatin fibers, requires computation for hundreds of thousands
to tens of millions of particles, which are mostly solvent. Hence,
to efficiently study such systems, a simplified, coarse-grained
(CG) representation is needed. The main difficulty in developing
CG models is retaining sufficient fidelity to the original explicit
solvent description, such that essential physics of processes of
interest can still be reliably captured.

In the majority of works on coarse-graining various molecular
systems, a great deal of attention is paid to the accuracy of
simplified models for the solute molecules, while the surround-
ing aqueous salt environment is treated as a continuous medium.
There are, however, numerous examples suggesting the impor-
tance of explicitly considering the mobile ions in CG models.
For instance, it is desirable and may even be necessary from a
physical standpoint to include explicit ions in systems whose
behavior is primarily driven by the electrostatic interactions.
Compaction of highly charged DNA molecules inside nuclei

of eukaryotic cells, so-called chromatin folding,1 is illustrative
of phenomena driven by electrostatics, where the extent of
chromatin compaction and stability of specific conformations
strongly depend on the concentration of mobile ions in a
solution.2 This is because counterions, such as Na+ or K+,
interact with the oppositely charged DNA phosphate groups,
mitigating the electrostatic repulsion between distant parts of
DNA molecule and facilitating chromatin folding. Counterions
also play an important role in RNA folding.3

Because of the complex nature of interactions among DNA,
water molecules, and ions, the commonly used continuous
approximations for mobile ions ignore some of the important
interactions that occur at short distances (see refs 4, 5), which
are vital to chromatin organization in the compact state. For
example, representing ions explicitly may significantly improve
coarse-grained modeling of a nucleosome, a nucleoprotein
complex comprised of the DNA chain wrapped around the
protein histone core, which is the basic unit of the chromatin
fiber.2 Counterions crucially interact not only with negatively
charged DNA, but also the protein part of the nucleosome.2

When we compared counterion association obtained from all-
atom simulations with the nonlinear Poisson-Boltzmann equa-
tion results, at the same salt concentration, we found significant
differences.4 This points to the importance of the discrete
character of ions and water, which is manifested by nontrivial
hydration effects. Consequently, one may expect ionic interac-
tions and hydration effects to have a profound effect on the
formation of the higher order chromatin structures, because a
typical internucleosomal distance in the chromatin fiber is of
the order of ∼10 Å,6,7 a distance at which continuous electro-
statics breaks down.4,5* Corresponding author. E-mail: gpapoian@unc.edu.

J. Phys. Chem. B 2009, 113, 7785–7793 7785

10.1021/jp9005058 CCC: $40.75  2009 American Chemical Society
Published on Web 05/08/2009



The influence of mobile ions on the dynamics of charged
macromolecule has been demonstrated by recent works on the
coarse-graining double-stranded DNA chain.8-10 For example,
a good agreement with experiment was obtained for the values
of DNA persistence lengths calculated at various NaCl con-
centrations in a CG model of DNA segment, where mobile Na+

and Cl- ions were treated explicitly.9 In a different and more
detailed CG DNA model, however, with no explicit mobile ions,
the DNA persistence length appeared to be twice smaller than
the experimental value.8 Finally, our recent model of the DNA
chain,10 also lacking explicit ions, produced a DNA persistence
length that is larger by ∼25% than the corresponding experi-
mental value (unpublished data). However, because all of these
models differ in resolution and no parameter optimization was
performed in the two first of the studies, it is not possible to
infer the extent of the DNA model improvement due to explicit
treatment of mobile ions. The above discussion points to the
lack of an accurate CG model of DNA in which the mobile
ions are treated explicitly. It is important to have such a model
because there obviously exists a noticeable difference between
the dynamics of CG DNA chain modulated by explicit mobile
ions and the corresponding dynamics observed with the continu-
ous model of surrounding salt.

The discussion thus far suggests that to accurately represent
electrostatic interactions in simplified models of complex
charged systems it is necessary to consider mobile ions on equal
footing with the charged object itself. Toward this goal, implicit-
solvent interionic potentials are necessary to describe the bulk
properties of monovalent electrolyte solutions by systematically
integrating out the solvent degrees of freedom. This is the goal
of the present study.

Our approach is based on constructing an effective Hamil-
tonian for the CG system, mobile Na+ (or K+) and Cl- ions
without explicit water, where the Hamiltonian is expressed as
a linear combination of molecular interaction potentials, which
are simultaneously thought of as relevant physical observables,
followed by subsequent iterative parameter optimization (see
Methods section). Our motivation is to make the Hamiltonian
compact and physically plausible, which significantly reduces
the choice of physical observables from the potentially infinite
manifold. In this respect, our approach differs principally from
the closely related optimization method due to Lyubartsev and
Laaksonen, where all pairwise interactions were decomposed
over the very large and not physically motivated set of positional
Dirac delta-functions.11-13 An extremely large number of the
latter basis functions are needed for describing many-body
interactions in polymer chains, such as bending and dihedral
interactions, making the subsequent inversion problem impracti-
cal, as discussed in detail in our recent work.10 On the other
hand, the Lyubartsev-Laaksonen (LL) optimization technique
seemed to have worked reasonably well for simple systems with
small number of pairwise interactions, as demonstrated by
coarse-graining of ionic solutions.11 However, even for such
systems, the optimization procedure may be quite problematic
because of inherent redundancy of the large delta-function basis
set, which is further elaborated below. As a result of this
degeneracy, multiple unrelated parameter sets might result from
LL optimizations, posing serious convergency and uniqueness
issues, as recognized in the earlier works.11

Our CG Hamiltonian, on the other hand, is highly compact
at the price of introducing basis set functions of different
dimensionality. As explained in the Methods section, the
Hamiltonian compaction may be viewed as “projecting” the
dynamics of the original AA system onto the relevant set of

dynamical modes, associated with the reduced CG Hamiltonian
basis set. The advantage of our method rests on the linearity of
the Hamiltonian with respect to optimizable parameters and also
Hamiltonian’s compactness, where these properties play a key
role during parameter optimization. The latter, within the mean
field approximation, relies on matching various pair (cross)-
correlators for the dynamical variables in CG and the reference
AA systems. At the same time, Hamiltonian compactness makes
it computationally feasible to go far beyond matching solely
pair correlators and permits reproduction of correlators of higher
orders, thus significantly enhancing the accuracy of the model.
Additionally, the Hamiltonian linearity over physical observables
allows us to interpret the system’s partition function as a
generating functional that can be differentiated to obtain the
corresponding correlation functions. Mathematically then, match-
ing various order correlators of the physical observables that
directly enter the CG Hamiltonian between CG and AA systems
ensures a significant equivalence of the corresponding partition
functions, making the coarse-graining in this work reminiscent
of renormalization group (RG) theory,14 as further elaborated
below. From this perspective, integrating out the solvent degrees
of freedom, as we pass from the AA to the simplified CG system
(comprised of ions only), corresponds to one-step renormaliza-
tion. In more complex molecular systems, multiple rounds of
coarse-graining would be straightforward using this approach.

Notably, both LL and our methods are RG-based optimization
techniques. In particular, the LL technique was adapted from
the RG Monte Carlo method developed by Swendsen to study
critical phenomena in three-dimensional Ising models.15 How-
ever, the above-mentioned difficulty of incorporating the many-
body effects into the optimization scheme is a drawback of LL
approach, restricting its applicability to simple molecular
systems. After Lyubartsev et al., we generalized Swendsen’s
RG method even further to effectively deal with many-body
effects in complex molecular systems. For example, molecular
renormalization group coarse-graining (MRG-CG), using mo-
lecular basis functions in the RG based optimization scheme,
has been applied to developing a two-bead per base pair model
of double-stranded DNA.10 In the present work, we test the
method on much simpler systems of mobile Na+ (K+) and Cl-

ions at various concentrations. Despite simplicity, however, such
systems are characterized by long-range electrostatic interactions
and complex dynamical correlations among the ions. Thus, care
should be exercised in the choice of the relevant physical
observables to guarantee the completeness of the Hamiltonian
basis set, which, in turn, assures the convergence of the
parameter optimization procedure, as discussed below. The
interaction potentials for the monovalent ionic solutions derived
in this work (see the Supporting Information for the parameter
set tables) may be used to incorporate ions into complex coarse-
grained biomolecular simulations, where both electrostatic and
short-range hydration effects need to be taken into account.

Method Section

MD Simulations of All-Atom Systems. To build CG models
of NaCl electrolyte at various ionic concentrations by integrating
out water from the corresponding all-atom aqueous solutions,
we prepared three systems representing NaCl solutions at 100,
300, and 500 mM ionic concentrations. The systems were
comprised of 7, 21, and 35 NaCl molecules, respectively, placed
evenly throughout the cubic box having dimensions 45 × 45
× 45 Å. We note that a larger simulation box could have been
used to reduce the finite size effects. However, we are only
trying to determine short-range interactions for the coarse-

7786 J. Phys. Chem. B, Vol. 113, No. 22, 2009 Savelyev and Papoian



grained Hamiltonian, on the order of 10 Å. The long-range
interactions in the CG model are given by the Coulomb
potential, without adjustable parameters. Because the periodic
cell linear dimension is at least 4-fold greater as compared to
the length scale of the short-range interactions, we expect that
finite size effects do not appreciably influence the optimized
parameter values for these interactions. All systems were further
solvated in more than 2800 TIP3P water molecules.16 We used
the recently developed force field for alkali and halide monova-
lent ions to parametrize interionic and ion-water interactions17

and AMBER 10.0 software suite to carry out all MD simula-
tions.18 It is important to note that the earlier default force field
for monovalent ions in AMBER led to small overestimation of
K+Cl- association, as discussed in our recent works5,19,20 as well
as the works of others.21-23 All initial structures have been first
minimized according to the standard steepest descent algorithm.
Next, they were heated to 300 K over a period of 1 ns and
subsequently equilibrated for another 5 ns in the canonical NVT
ensemble. The subsequent production run for each system was
carried out at constant temperature (300 K) and pressure (1 bar)
using the Langevin temperature equilibration scheme, the “weak-
coupling” pressure equilibration scheme,24 and periodic bound-
ary conditions. The translational center-of-mass motion was
removed every 2 ps. We used the SHAKE algorithm25 to
constrain all bonds involving hydrogens, which allows all MD
simulations to use an increased time step of 2 fs without any
instability. Particle Mesh Ewald method26 was used to treat long-
range interactions with a 10 Å nonbonded cutoff. The production
run was carried out for 60 ns to ensure the equilibration of ions.
The above protocol was also used to simulate a 300 mM solution
of K+ and Cl- ions, whose composition and geometry were
identical to those of the 300 mM NaCl system.

MD Simulations of Coarse-Grained Systems. We used the
large-scale atomic/molecular massively parallel simulator (LAM-
MPS)27 to carry out MD simulations of CG ionic systems at
100, 300, and 500 mM concentrations. Number of Na+ (K+)
and Cl- ions as well as the size of the periodically repeating
cubic cell in each system were the same as in the corresponding
all-atom system. To be consistent when going from atomistic
to coarse-grained simulations, we kept the sizes of simulation
boxes equal to those of the AA system, such that both the cutoff
for direct Coulomb interactions and, importantly, the size of
periodic cell along with the precision of the Ewald summation
procedure (which defines the number of k-space points) remain
unchanged. Our experience with varying the periodic box sizes
suggests that the latter requirement is necessary, because
different conditions for Ewald procedure may influence elec-
trostatics. Following these requirements, the number of ions and
the size of periodically repeating cubic cell in each of the CG
systems were the same as in the corresponding AA system. We
used the canonical NVT integration scheme (Nose/Hoover
temperature thermostat) to update particle’s positions and
velocities at each time step.28 Similarly to all-atom systems, all
CG systems were minimized, heated to 300 K, and equilibrated
before the production run used for further analysis. Particle Mesh
Ewald technique26 was used to treat the long-range (Coulomb)
interactions. To determine the largest time step that can be used
to simulate the CG system without instabilities, we used the
criteria of the total energy conservation, the latter being the
energy of the CG system complemented by the contribution
from the Nose-Hoover Hamiltonian.8 It appeared that it was
safe to use the time-steps of up to 10 fs, so we used this upper
limit in the MD simulations. The production run for each
optimization iteration was 40 ns to ensure the convergence of

the covariance matrix for physical observables (see eq 5). We
verified the convergence at each iteration by comparing the data
generated from two halves of the MD trajectory.

Computing the Ionic Potential of Mean Force. As is
customary, we use the potentials of mean force (PMF) as a
starting approximation for the effective interactions in the CG
system.29 PMFs are obtained by the Boltzmann inversion of the
corresponding all-atomistic distribution functions.30 In the
context of the present work, interionic PMF, UPMF, is expressed
through the ionic radial distribution function (RDF), g(r), as
follows:

UPMF ) -kBT ln g(r) (1)

To calculate g(r), we first compute Na-Na, Na-Cl, and Cl-Cl
separations for all ionic pairs and construct the corresponding
distance histograms from each snapshot of MD simulation. Next,
these histograms are subject to normalization by the volume
(spherical) Jacobian, J(r) dr ) 4rπ2 dr, to ensure that the number
of neighbors within a distance r from a given ion is

n(r) ) F∫0

r
g(r)J(r) dr (2)

where F is the average concentration of ions.
Optimizing Force-Field Parameters Using RG-Inspired

Approach. The optimization scheme used in the present work
closely follows the Monte Carlo RG method developed by
Swendsen and co-workers to compute critical exponents in Ising
models.15 To proceed with mathematical formulation of the
problem, we first introduce an effective CG Hamiltonian
H({KR}), defined by a parameter set, {KR}, R ) 1...N, and a
set of observables of interest, {SR({KR})}, subject to canonical
averaging over H({KR}). In this work, we are mostly interested
in Hamiltonians, which are of the following form, H )
∑RKRSR. Here, the term “observable” refers to the quantity
collected in AA and CG systems, thus being “measured” in the
context of numerical experiments. As explained in the section
Hamiltonian as a Linear Combination of Physical Observables,
for the present case of electrolyte systems, the set of observables
is related to specific integral characteristics composed of
interatomic interaction potentials. The difference, ∆〈SR〉 ≡ 〈SR〉CG

- 〈SR〉AA, between the expectation values of an observable, SR,
averaged over CG and AA systems may be expressed as

∆〈SR〉 ) ∑
γ

∂〈SR〉CG

∂Kγ
∆Kγ + O(∆K2) (3)

which is simply an expansion of 〈SR〉CG around some point in
space of the Hamiltonian {KR}. The analogous observables,
〈SR〉AA, can be defined and computed from atomistic simulations;
however, they enter into eq 3 as specific numbers, through ∆〈SR〉
≡ 〈SR〉CG - 〈SR〉AA. The derivative in eq 3 is given by (CG
subscripts are omitted):

∂〈SR〉
∂Kγ

) - 1
kBT[〈SR ·

∂H
∂Kγ

〉 - 〈SR〉〈 ∂H
∂Kγ

〉] (4)

and represents “susceptibility” of observable 〈SR〉 to the change
of parameter Kγ (R and γ may be different). Hence, eq 3 may
be viewed as the system’s linear response to an external potential
∆K. This analogy is particularly beneficial in case of Hamil-
tonians linear in {KR}, having the form H ) ∑RKRSR. Next, eq
3 reduces to

∆〈SR〉 ) -1/(kBT) ∑
γ

[〈SRSγ〉 - 〈SR〉〈Sγ〉]∆Kγ (5)

being expressed in terms of cross-correlators of various ob-
servables, as expected for susceptibilities. The following
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parameter optimization scheme may be used to decrease ∆〈SR〉.
First, the 〈SRSγ〉CG correlators are obtained from MD simulations
of the CG system using some trial set of Hamiltionian
parameters, {KR

(0)}, followed by the calculation of the deviations
∆〈SR〉 of each CG variable from their corresponding reference
AA values. Subsequently, the system of linear eq 5 is solved to
yield the corrections for the Hamiltonian parameters, ∆KR

(0),
which define a new parameter set KR

(1) ) KR
(0) + ∆KR

(0) for the
next CG iteration. The procedure is repeated until the conver-
gence of all CG variables is reached, that is, 〈SR〉CG ≈ 〈SR〉AA.

Solving the Inverse Problem. Eigenvalues of covariance
matrix (5) indicate how changes in various dynamical modes
affect different effective potentials. For the present ionic
problem, it turns out that the covariance matrix is nearly singular,
resulting in degeneracy of solutions that represent various sets
of parameters. Apparently, this problem is caused by the
redundancy of interaction potential functions as well as by the
noise that is normally present in the input data obtained from
MD simulations.13,31 When too many observables are used to
describe the CG system, larger uncertainty in the covariance
matrix inversion results, and thus the stronger is the degeneracy
of the resulting set of CG Hamiltonian parameters. This implies,
in particular, a significant advantage of using our compact set
of 18 basis functions as compared to a very large set of ∼600
positional Dirac delta-functions used in the LL approach. After
a compact Hamiltonian basis set was introduced, further
reduction in the degeneracy can be achieved by eliminating those
matrix eigenvectors that superfluously affect Hamiltonian
parameters. Singular value decomposition (SVD) could have
been directly used to address this issue if the elements of the
covariance matrix in eq 5 had identical physical units. However,
the matrix element 〈S1

ev ·S2
Gauss〉 - 〈S1

ev〉〈S2
Gauss〉 involving cumula-

tive Gaussian and the repulsive (1/r)12 functions (see section
Hamiltonian as a Linear Combination of Physical Observables)
is measured in units of [Å-12], while the diagonal element 〈(S2)2〉
- 〈S2〉2 is dimensionless. Therefore, to use SVD at each iteration,
we reduced the corresponding covariance matrix to a dimen-
sionless form by appropriately rescaling vectors ∆KR and ∆〈SR〉.
Next, in matrix notation, the rescaled eq 5 takes a form,

∑
j

Mij

√qi ·qj
T
· [Xj · √qj] )

Bi

√qi

, qi ≡ Mii (6)

with M, X, and B standing for the covariance matrix, vector of
the corrections ∆KR, and the vector of deviations ∆〈SR〉,
respectively. As follows from the second equation, vector q is
composed from the diagonal elements of the original matrix
M. Hence, the latter is reduced to a dimensionless form (with
unit elements on the diagonal) after its element-by-element
division by the tensor (qi ·qj

T)1/2. After near zero eigenvalues

were filtered out and a subsequent matrix inversion was
performed, the original units of the elements ∆KR were obtained
by reverse transformation.

Coarse-Grained Modeling of NaCl Solutions. We model
an aqueous NaCl solution as a collection of particles, each
carrying a charge of either +1 or -1, corresponding to Na+

and Cl- ions, respectively, which interact via potentials ac-
counting for the ionic hydration and associated with the
structural behavior of ions at small separations. The ion-ion
RDFs computed from all-atom MD simulations of all three NaCl
systems are shown in Figure 1. It is seen that there are several
pronounced peaks in each RDF, indicating a formation of ionic
“shells” around a given ion. In particular, the first peak
corresponds to direct ionic contacts, while other peaks reflect
the water-mediated interactions. Note, in more dilute solutions
the repulsion between like charged ions is stronger because they
are less screened electrostatically by ions of the opposite charge
(see Figure 1a,b). This trend is consistent with the stronger
attraction among Na+ and Cl- ions in dilute solutions, as
indicated in Figure 1c. This structural analysis suggests that the
effective CG Hamiltonian may be represented as a sum of (at
least) three contributions,

H ) Uex + Uhyd + Uel (7)

In this expression, the first term indicates the energy due to
excluded volume interactions, the second term is responsible
for ionic hydration effects, and the last term represents the sum
of electrostatic interactions.

As suggested in the previous section, the functional forms
for individual energetic contributions can be inferred from the
ionic PMFs obtained by the Boltzmann inversion of the
corresponding RDFs (see eq 1). An example of the PMF
characterizing Na-Cl interactions in the half-molar NaCl
aqueous solution is demonstrated in Figure 2a.

First, we assume that particles in the CG system interact via
long-range Coulomb potential. This, particularly, allowed us to
set the absolute scale of the ionic PMF by equating the PMF
value at the largest ionic separation to the interaction energy
calculated from the analytical Coulomb potential. Aside from
electrostatics, another obvious component of the PMF is a
strongly repulsive short-range potential characterizing excluded
volume interactions, whose functional form we approximate by
the repulsive part of the Lennard-Jones potential, (1/r)12. Finally,
to capture structural ionic peaks and minima in the PMF, we
propose to use Gaussian functions. Indeed, a certain PMF peak
or minimum can be described by a function that is nonzero in
a narrow range of interparticle separations, and a Gaussian
function is ideally suited for that purpose. This is also a
physically sound choice, because Gaussians corresponding to
peaks of the PMF may be associated with the free energy penalty

Figure 1. Radial distribution functions obtained from all-atom MD simulations of NaCl aqueous solution at three different ionic concentrations.
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for two ions to approach each other due to ionic dehydration.
Similarly, Gaussians representing PMF minima describe a
favorable range of ionic separations when ions are in a direct
contact, separated by a certain amount of water molecules or
fully hydrated. As a result, our effective Hamiltonian has the
following functional form:

H ) ∑
i>j [ A

rij
12

+ ∑
k)1

5

B(k)e-C(k)[rij - R(k)]2
+

qiqj

4πε0εrij]
(8)

defined by the set of parameters, {A,B(k),C(k)}, and the positions
of Gaussian peaks and minima, {R(k)}. The sum is over all pairs
of CG particles. The Coulomb potential for interacting parti-
cles of charges qi and qj is scaled by the dielectric constant for
water, ε ) 80. We decided to include up to k ) 5 Gaussian
functions in the Hamiltonian to accurately capture the PMF
structural properties represented by first three minima and first
two maxima, as shown in Figure 2b.

Initial values for all Hamiltonian parameters can be obtained
by fitting the above functional forms into ionic PMFs.29 A
remark regarding the technical side of doing this is in order.
First, we approximate the electrostatic interactions by the
Debye-Hückel (DH) potential, (1/r)e-κr, with the Debye length,
κ-1, corresponding to a given ionic concentration. The reason
we substitute the real Coulomb interactions by DH potential
follows from the fact that ionic PMF was obtained through
averaging over all but two particles of interest. Indeed, on the
level of mean field theory, the electrostatic interactions between
any two ions in the electrolyte solution are represented by the
screened Coulomb, or DH potential.30,32 As a result, all of the
initial parameters, {A,B(k),C(k),R(k)}, follow from fitting analytical
forms in eq 8, aside from the Coulomb potential, into the
numerical difference between the all-atom PMF and the DH
potential, as demonstrated in Figure 2a,b. Note, we used the
DH potential exclusively for obtaining the initial guess of
parameters for the short-range interactions. Because ions are
explicitly present in the CG model, their bare interactions are
Coulombic, and not of the DH form. Thus, we used the pure
Coulomb potential, damped by the dielectric constant of water,
in MD simulations of CG systems of many ions, as seen in eq
8. As discussed below, the trial values for Hamiltonian
parameters obtained in a way just described generated ionic
distributions already very plausible and close to the correspond-
ing all-atom RDFs. In particular, relying upon the Debye-Hückel

theory of electrolyte solutions resulted in a number of subsequent
optimization steps significantly smaller than that had we started
from a different and less physical approximation for electrostatic
interactions during fitting (see section Optimizing the Hamil-
tonian Parameters and Comparing to All-Atom Results).

Hamiltonian as a Linear Combination of Physical Ob-
servables. As explained in the Methods section, the present
optimization technique relies on representing the effective
Hamiltonian in the following form, H ) ∑R ) 1

N KRSR, which is
a linear decomposition over the N physical observables, {SR},
defined by a set of parameters {KR}. To elucidate what are
physical observables in the current ionic problem, we analyze
the structure of the effective Hamiltonian, eq 8. It follows that
each type of effective ionic interactions is described by a very
small number of observables, which are structure-based col-
lective order parameters. For example, five collective modes
characterizing structure of ionic “shells” are cumulative Gauss-
ian functions, SR

Gauss ) ∑allpairs[e-CR(r - RR)2
], R ) 1...5, while the

corresponding parameters {KR} are given by the set of constants
{B(k)}; see eq 8. Note, the linearity of the Hamiltonian implies
that only coefficients {KR} in the expansion H ) ∑RKRSR are
subject to adjustment by optimization procedure (see Methods
section). Therefore, while optimizing KR’s, we kept the Gaussian
variances CR’s and the positions RR’s in observables {SR

Gauss} to
be equal to the values obtained from fitting the Hamiltonian
(eq 8) into PMFs, as explained above. This is, indeed, a
reasonable approximation, because both the width and the
position of each Gaussian function remain unchanged in the
course of optimization procedure (see Figures 3 and 4). It is
worth noting, finally, that for observables {SR

Gauss} to be
physically meaningful, the variances of Gaussian functions
should be extracted from their separate fitting into the corre-
sponding peaks/minima of ionic PMFs and not from the best
fit of the whole Hamiltonian into ionic PMF. This requirement
reflects the locality of these observables and ensures the absence
of spurious long-range correlations among {SR

Gauss}. The latter,
in particular, significantly enhances the quality of the optimiza-
tion procedure.

Analogously, the collective observable for excluded volume
interactions is given by SR

ev ) ∑allpairs(1/r12), and the role of the
corresponding scaling paramter is played by the constant A.
Finally, we do not associate the electrostatics with any observ-
ables because exact Coulomb interactions have no adjustable
parameters. As a result, aside from electrostatics, (5 × 3) + 3
) 18 constants {KR} enter the effective Hamiltonian, because

Figure 2. (a) The PMF (solid black line) representing Na-Cl interactions in a half-molar NaCl solution obtained by Boltzmann inversion of the
corresponding all-atom RDF. For fitting purposes, it was decomposed into the Debye-Hückel (DH) potential and the remaining part characterizing
structural ionic behavior. The latter was approximated by the repulsive (1/r)12 potential and five Gaussian functions, as shown in panel (b). See the
text for explanations.
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there are five {SGauss} terms characterizing each of three types
of ionic interactions (Na-Na, Na-Cl, and Cl-Cl), and also
three corresponding excluded volume terms.

In the above discussion, KR’s may be understood as fields
“conjugate” to collective observables SR’s. These fields are
subject to optimization procedure aimed to reducing the
difference between the expectation values of observables, ∆〈SR〉
) 〈SR〉CG - 〈SR〉AA, averaged over CG and AA systems. From
the other and equivalent perspective, SR’s can be viewed as a
set of basis functions over which an effective Hamiltonian is
spanned. A completeness of the given basis set is consistent
with all ∆〈SR〉’s nearly vanishing after parameter optimization.

Parallels with prior related works can be drawn to illustrate
various choices of physical observables. For example, in
Swendsen’s original work,15 SR’s indicated various cumulative
spin products, corresponding to interactions between nearest-
neighbor and distant spins, as well as many-spin interactions
(generated by RG). Lyubartsev et al. expressed11 ionic radial
distribution functions (RDF) in terms of SR’s, where the latter
were positional Dirac delta-functions. As discussed in the
Methods section, this renders the inverse problem significantly
ill-posed, even for simple systems characterized by pairwise
interactions, but especially when many-body effects are taken
into account. In our recent work on DNA coarse-graining,10 we
related SR’s to various collective modes associated with different
types of effective molecular interactions in a DNA chain, such
as bond, bending angle interactions, etc. In the present work,
we follow a similar strategy to decompose the ionic Hamiltonian
over a compact set of physically motivated collective observables.

Optimizing the Hamiltonian Parameters and Comparing

to All-Atom Results. The trial set of Hamiltonian parameters,
{KR

(0)}, derived from fitting the functional forms in eq 8 to the
PMFs (see section Coarse-Grained Modeling of NaCl Solutions)
generated very plausible ionic distributions, as shown in Figure
3. Evidently, such a good agreement with all-atom results is a
consequence of utilizing the DH potential to approximate the
electrostatic part of the ionic PMF. To further improve the
quality of ionic distributions, we optimized the Hamiltonian
parameters by solving eq 5 according to the technique outlined
in the Methods. MD simulations of all CG systems were carried
out using the Los Alamos atomic/molecular massively parallel
simulator (LAMMPS).27 The details of the simulation protocol
are provided in the Methods section.

It appeared that a very small number of optimization steps
was required for all ∆〈SR〉 ) 〈SR〉CG - 〈SR〉AA to nearly vanish.
Because each ∆〈SR〉 is expressed in terms of cross-correlators
for various CG degrees of freedom (see Methods section), this
implies the absence of significant correlations between ions in
a solution beyond DH correlations. For example, only one
iteration was needed for the convergence of optimization
procedure in a dilute 100 mM system of Na+ and Cl- ions. At
the same time, two and three iterative steps led to the
convergence in systems with ionic concentrations of 300 and
500 mM, respectively. This trend may be explained by less
pronounced correlation effects in a more dilute solution. Hence,
among studied systems, the PMF is the best starting approxima-
tion for 0.1 M NaCl solution, and, consequently, the least
number of optimization steps were needed. Ionic distributions
for all three simulated systems at the initial and final stages of

Figure 3. Radial distribution functions computed in three systems with 100, 300, and 500 mM ionic concentrations. Black, red, and blue lines
represent the reference AA, initial CG, and the corrected by optimization final CG distributions, respectively. Initial CG distributions are those
generated by potentials obtained by fitting to ionic PMFs using DH approximation for the electrostatics, as explained in the Coarse-Grained Modeling
of NaCl Solutions section.
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optimization procedure, as well as the corresponding all-atom
RDFs, are shown in Figure 3.

Table 1 in the Supporting Information summarizes the final
ionic parameters for NaCl solutions at 100, 300, and 500 mM
concentrations. It is seen that parameters do not vary signifi-
cantly as we alter the concentration of ions. Apparently, this is
because the ionic RDFs are quite similar to each other, as
indicated in Figure 1. As an additional test of the MRG-CG
method, we derived an effective interaction potential for K+

and Cl- ions by coarse-graining the 300 mM KCl solution. Both
AA and CG KCl systems were simulated according to the MD
protocols outlined in the Methods section. As in the case of
NaCl systems, we used the DH approximation for electrostatic
interactions among ions to extract the trial set of Hamiltonian
parameters. The optimized ionic parameters are given in Table
2 of the Supporting Information. The quality of distributions
for ions in the CG KCl system (not shown) appeared to be
comparable to the quality of ionic distributions in NaCl systems
(Figure 3). Particularly, an excellent agreement was found with
the all-atomistic results, and only two iterative steps were needed
to reach the convergence of optimization procedure.

As discussed above, the parameters for ions do not change
significantly as the concentrations are varied between 0.1 and
0.5 M. Therefore, we suggest, for example, that the parameters
obtained for 0.1 and 0.5 M solutions may be used to simulate
slightly more dilute and more dense electrolyte solutions,
respectively, outside of the 0.1-0.5 M range. At the same time,
it has to be kept in mind that parameter transferability depends
strongly on the specific question being asked: if, for example,
the observable of interest is very sensitive to the ionic
concentration, then the coarse-grained model may need to be

parametrized for a particular concentration of interest. Con-
versely, if one is interested, for example, in elucidating the
dependence of the conformational dynamics of DNA on the
concentration of the ionic buffer in a range of common interest,
0.1-1 M, the use of parameters obtained here is expected to
be satisfactory.

Because the initial distributions generated by the trial set of
Hamiltonian parameters are already very close to the reference
all-atomistic ones, we also carried out an additional optimization
run in a 500 mM NaCl system starting from much less favorable
initial conditions. The ionic distributions obtained at different
stages of such optimization are shown in Figure 4. It follows
that the present RG-based optimization method is robust,
demonstrating good agreement among atomistic and coarse-
grained distribution functions for various structural observables.

We can estimate the change in the total free energy difference,
δF ) ∑RKR∆SR, between AA and CG systems in the course of
optimization procedure. As illustrated in the last panel of Figure
4, only seven iterations are needed to reduce the (average) total
free energy difference between AA and CG systems to a small
value within the statistical error of the simulation (〈δF〉 ≈
0.6kBT). As noted earlier, when we utilized the DH approxima-
tion to infer the initial ionic parameters, the number of iterations
were 1, 2, and 3, respectively, for 100, 300, and 500 mM NaCl
solutions. Two optimization steps were needed for the 300 mM
KCl solution. Finally, the discrepancies between the thermally
averaged individual CG and AA terms, |KRSR|, were on the
order of 0.01kBT per degree of freedom, indicating good
correspondence between CG and AA Hamiltonians.

Because NaCl and KCl solutions are among the most
commonly used salt buffers in both experimental studies (of,

Figure 4. (a)-(c) Radial distribution functions for ions in a half-molar NaCl system obtained from optimization run starting from unfavorable
initial conditions. Line colors are consistent with those in Figure 3. Distributions for intermediate steps are also indicated as dash lines. Last panel
(f) demonstrates the reduction of the total free energy difference δF between AA and CG models with optimization iterations.

Coarse-Graining of Electrolyte Solutions J. Phys. Chem. B, Vol. 113, No. 22, 2009 7791



e.g., DNA fibers and chromatin) and MD simulations, the
obtained ionic parameters may be directly used in CG models
of complex biological systems, where an explicit treatment of
ions is desirable and necessary from physical standpoint. At
the same time, the effective interactions between ions and the
solute molecule itself have to be inferred from a separate
analysis of the corresponding distribution functions. For ex-
ample, in an ongoing work on incorporating an explicit NaCl
salt into the recently developed CG DNA model,10 we use the
present optimization scheme to capture the coupling between
the dynamics of a DNA chain and the surrounding Na+ and
Cl- mobile ions, along with the ionic parameters derived in
this work to represent the bulk properties of the NaCl solution.

Discussion

We suggest that the present coarse-graining scheme compares
favorably with other commonly used optimization methods.
Interestingly, prior works using this method for spin15 and ionic
systems11 did not clearly elaborate on the specifics of its close
relationship to the RG theory. Here, we point out these
connections and demonstrate how to generalize the method to
achieve an arbitrarily high accuracy. We start by noticing that
representing Hamiltonian as a linear decomposition over ob-
servables SR allows one to interpret the partition function,
L ({K}) ∝ ∑exp[-1/(kBT)∑R)1

N KRSR], as a generating function
that can be differentiated to obtain all correlation functions,14

〈S1...Sn〉 ∝ δn ln L
δK1...δKn

(9)

Again, KR’s here may be viewed as the fields “conjugate” to
observables SR’s. Thus, certain equivalence between the AA and
CG partition functions may be achieved if their corresponding
derivatives become equal. The equality of higher derivatives
would suggest a more accurate correspondence. Hence, if two
partition functions generate two identical sets of various auto-
and cross-correlators of order n and less (hence, identical nth
derivatives of the free energies), we can think of n as a degree
of similarity between two generating functions. From this
perspective, Swendsen’s optimization method, which matches
only first moments in distributions over observables SR, corre-
sponds to order n ) 1 of equivalency between CG and AA
systems. Within the present framework, it is straightforward to
achieve higher accuracy in CG system description by demanding
the coincidence of higher moments in SR. This, in turn, would
require computing (cross) correlators of order n + 1, to be used
in equations equivalent to eq 5.

For example, we can use the condition ∆〈SRSγ〉 ≈ 0 to match
various second-order correlators, ensuring the equivalence of
second-order derivatives of CG and AA free energies with
respect to conjugate fields, {KR}. In that case, the system of N
linear equations, eq 5, would be supplemented by N(N - 1)/2
equations for ∆〈SRSγ〉 expressed in terms of various correlators
of the third order. Because simple electrolyte solutions are
characterized by a relatively small number of observables, N
j 102, it is computationally feasible to solve such an extended
system of (still linear) equations. It is worth noting that
discrepancy in higher order correlators is not expected in simple
homogeneous systems, such as relatively dilute electrolyte
solutions described in this work; however, this issue may
become important in heterogeneous systems. In particular, we
have found in a related study that to accurately capture the
coupling between the dynamics of the DNA chain and the
surrounding ionic atmosphere, the latter being strongly inho-
mogeneous along the macromolecule, it is necessary to ensure

that second-order correlators are well reproduced. This will be
elaborated elsewhere.

It is also interesting to qualitatively compare the MRG-CG
technique, elaborated here, with other approaches to coarse-
graining, in particular, where many-body correlations are taken
into account. The multiscale coarse-graining (MS-CG) method
developed by Voth and co-workers is based on the force
matching between atomistic and coarse-grained systems to
obtain CG model parameters.33-35 This technique has been
applied to the coarse-graining of mixed lipid bilayers, peptides,
and ionic liquids.36 The major difference between the present
and the MS-CG techniques comes from different ways of
practically implementing low-order truncations. In that regard,
it will be interesting to compare these methods, when applied
to various systems, in terms of obtaining unique, transferrable
solutions and the accuracy of the CG force field, as compared
to the reference atomistic simulations. Yet another physical
coarse-graining approach, which takes into account many-body
interactions, has been developed by Scheraga and co-workers
in the context of developing a CG protein force field.37 Their
approach, however, is very different from our approach, based
on a high-temperature cumulant expansion. It would be interest-
ing to apply this technique to coarse-grain electrolyte solutions
and compare the obtained accuracy with the MRG-CG results,
presented in this work.

In summary, our generalization of Swendsen’s method
compares favorably with many other commonly used alternative
schemes aimed at matching some ad-hoc structural character-
istics (see ref 38 and references therein), but not partition
functions. The MRG-CG method was recently applied10 to
develop a two-bead double-stranded DNA model, where
complicated correlations among polymeric degrees of freedom
were taken into account. In the current work, we showed that
structural properties of monovalent ionic solutions are accurately
captured by a small number of the collective dynamic modes,
on which the whole system dynamics is projected to build up
the effective Hamiltonian. The optimization scheme for finding
Hamiltonian parameters is computationally efficient, as con-
firmed by ionic RDFs and quick reduction of the free energy
difference between AA and CG systems. We estimate the error
between AA and CG Hamiltonians to be less than 0.01kBT per
degree of freedom. By showing the close relationship between
our technique and the RG theory, we suggest this method might
allow one to achieve high accuracy in coarse-graining of many
molecular systems. In general, we expect that CG models of
various complex biological molecules, including electrostatic
and hydration effects, can be built with the present technique.
However, atomistic simulations need to be equilibrated; thus,
coarse-graining of proteins remains an interesting challenge.

Acknowledgment. This work was supported by the Beckman
Young Investigator Award and Petroleum Research Fund Award
47593-G6.

Supporting Information Available: Optimized parameters
for the coarse-grained Hamiltonians for NaCl and KCl solutions
provided in Tables 1 and 2. This material is available free of
charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Luger, K.; Hansen, J. C. Curr. Opin. Struct. Biol. 2005, 15, 188–
196.

(2) Schiessel, H. J. Phys.: Condens. Matter 2003, 15, R699-R774.
(3) Koculi, E.; Hyeon, C.; Thirumalai, D.; Woodson, S. A. J. Am. Chem.

Soc. 2007, 129, 2676–2682.

7792 J. Phys. Chem. B, Vol. 113, No. 22, 2009 Savelyev and Papoian



(4) Savelyev, A.; Papoian, G. A. J. Am. Chem. Soc. 2006, 128, 14506–
14518.

(5) Savelyev, A.; Papoian, G. A. J. Am. Chem. Soc. 2007, 129, 6060–
6061.

(6) Schalch, T.; Duda, S.; Sargent, D. F.; Richmond, T. J. Nature 2005,
436, 138–141.

(7) Dorigo, B.; Schalch, T.; Kulangara, A.; Duda, S.; Schroeder, R. R.;
Richmond, T. J. Science 2004, 306, 1571–1573.

(8) Knotts, T. A.; Rathore, N.; Schwartz, D.; de Pablo, J. J. J. Chem.
Phys. 2007, 126, 084901.

(9) Mielke, S. P.; Gronbech-Jensen, N.; Benham, C. J. Phys. ReV. E
2008, 77, 031924.

(10) Savelyev, A.; Papoian, G. A. Biophys. J., (2009), doi: 10.1016/
j.bpj.2009.02.067.

(11) Lyubartsev, A. P.; Laaksonen, A. Phys. ReV. E 1995, 52, 3730–
3737.

(12) Lyubartsev, A. P.; Laaksonen, A. J. Chem. Phys. 1999, 111, 11207–
11215.

(13) Lyubartsev, A. P. Eur. Biophys. J. 2005, 35, 53–61.
(14) Zinn-Justin, J. Quantum Field Theory and Critical Phenomena;

Clarendon Press: Oxford, 2002.
(15) Swendsen, R. H. Phys. ReV. Lett. 1979, 42, 859–861.
(16) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952–

962.
(17) Joung, I. S.; Cheatham, T. E. J. Phys. Chem. B 2008, 112, 9020–

9041.
(18) Wang, J.; Cieplak, P.; Kollman, P. J. Comput. Chem. 2000, 21,

1049–1074.
(19) Savelyev, A.; Papoian, G. A. MendeleeV Commun. 2007, 17, 97–

99.
(20) Savelyev, A.; Papoian, G. A. J. Phys. Chem. B 2008, 112, 9135–

9145.
(21) Chen, A. A.; Pappu, R. V. J. Phys. Chem. B 2007, 111, 11884–

11887.

(22) Chen, A. A.; Pappu, R. V. J. Phys. Chem. B 2007, 111, 6469–
6478.

(23) Auffinger, P.; Cheatham, T. E.; Vaiana, A. C. J. Chem. Theory
Comput. 2007, 3, 1851–1859.

(24) Berendsen, H. J.; Postma, J. P.; van Gunsteren, W. F.; DiNola, A.;
Haak, J. R. J. Chem. Phys. 1984, 81, 3684–3690.

(25) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys.
1977, 23, 327–341.

(26) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089–
10092.

(27) Plimpton, S. J. Comput. Phys. 1995, 117, 1–19.
(28) Hoover, W. G. Phys. ReV. A 1985, 31, 1695–1697.
(29) Fukunaga, H.; Takimoto, J.; Doi, M. J. Chem. Phys. 2002, 116,

8183–8190.
(30) Barrat, J.-L.; Hansen, J.-P. Basic Concepts for Simple and Complex

Liquids; Cambridge University Press: New York, 2003.
(31) Lyubartsev, A. P.; Laaksonen, A. Chem. Phys. Lett. 2000, 325,

15–21.
(32) Robinson, R. A.; Stokes, R. H. Electrolyte Solutions; Dover

Publications, Inc.: New York, 2002.
(33) Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2005, 109, 2469–2473.
(34) Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.;

Voth, G. A.; Das, A.; Andersen, H. C. J. Chem. Phys. 2008, 128, 244114.
(35) Noid, W. G.; Liu, P.; Wang, Y.; Chu, J.-W.; Ayton, G. S.; Izvekov,

S.; Andersen, H. C.; Voth, G. A. J. Chem. Phys. 2008, 128, 244115.
(36) Noid, W. G.; Ayton, G. S.; Izvekov, S.; Voth, G. A. In Coarse-

Graining of Condensed Phase and Biomolecular Systems; Voth, G. A., Ed.;
CRC Press: Boca Raton, FL, 2008; Chapter 3, pp 21-40.

(37) Liwo, A.; Czaplewski, C.; Pillardy, J.; Scheraga, H. J. Chem. Phys.
2001, 115, 2323–2347.

(38) Nielsen, S. O.; Lopez, C. F.; Srinivas, G.; Klein, M. J. Phys.:
Condens. Matter 2004, 16, R481–R512.

JP9005058

Coarse-Graining of Electrolyte Solutions J. Phys. Chem. B, Vol. 113, No. 22, 2009 7793


