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Abstract

Unusual probability distribution profiles, including transient multi-peak distributions, have been observed in computer simulations of

cell signaling dynamics. The emergence of these complex distributions cannot be explained using either deterministic chemical kinetics or

simple Gaussian noise approximation. To develop physical insights into the origin of complex distributions in stochastic cell signaling,

we compared our approximate analytical solutions of signaling dynamics with the exact numerical simulations. Our results are based on

studying signaling in 2-step and 3-step enzyme amplification cascades that are among the most common building blocks of cellular

protein signaling networks. We have found that while the multi-peak distributions are typically transient, and eventually evolve into

single peak distributions, in certain cases these distributions may be stable in the limit of long times. We also have shown that introducing

positive feedback loops results in diminution of the probability distribution complexity.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Cells are highly nonequilibrium systems that require
constant energy flux to maintain their heterogeneous
structures and power their life activities. The gene
transcription, metabolism and cell motion are realized
and regulated by interconnected networks of complicated
biochemical reactions, including protein signal transduc-
tion processes (Gomperts et al., 2002; Bray, 1995). In cells,
these biochemical reactions are grouped into different
pathways that may crosstalk to each other and are usually
localized in space and coordinated in time. In recent years,
with large amount of data coming from high throughput
experiments, much effort has been devoted to model and
understand in detail how these signaling cascades work
(Heinrich et al., 2002; Chaves et al., 2004; Hansel and
Mato, 2001; Markevich et al., 2004; Huang et al., 2003;
Cao et al., 2004; Meng et al., 2004; Turner et al., 2004;
Brastsun et al., 2005). For example, one would like to
predict the cellular response to a specific external cue, for
example, a chemoattractant or a repellant. To answer these
e front matter r 2007 Elsevier Ltd. All rights reserved.
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types of questions, it is necessary to develop qualitative and
quantitative understanding of the signaling network
dynamical behaviors that arise from both steady state
and transient responses (Kærn et al., 2005; Yildirim et al.,
2004; Paulsson et al., 2000; Berg et al., 2000; Kepler and
Elston, 2001; Metzler and Wolynes, 2002; Blake et al.,
2003).
Cells constantly interact with their environment and

each other, inducing regulated response reactions in the
cell. These responses are often initiated at random points
on the cell surface and transduced into the cytosol by
discrete chemical reactions. If the number of protein copies
is large for each species in a cascade, the law of large
numbers guarantees the validity of a deterministic descrip-
tion based on the chemical kinetics equations (Heinrich
et al., 2002; Chaves et al., 2004; Hansel and Mato, 2001;
Markevich et al., 2004; Huang et al., 2003). If the protein
number of one species in a cascade is small, stochastic
description of signaling dynamics becomes necessary. It is
well established now that stochasticity plays a central role
in various signal transduction contexts (Cao et al., 2004;
Lubchenko and Silbey, 2004; Meng et al., 2004; Turner
et al., 2004; Brastsun et al., 2005; Stukalin and Kolomeisky,
2006; Cai et al., 2006; Thattai and van Oudenaarden, 2001;
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Fig. 1. A 3-step cascade with one positive feedback is shown. The smaller

network in the dashed box is a 2-step amplification cascade, which has

been the main focus of our recent works (Lan and Papoian, 2006; Lan

et al., 2006).
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Süel et al., 2006; Grossman, 1995; Sasai and Wolynes,
2003). Furthermore, in certain cases, cells may control and
even utilize the stochasticity intrinsic to signaling reactions
(Berg et al., 2000; Vilar and Rubı́, 2001; Arias and
Hayward, 2006).

Signaling network stochastic dynamics in the limit of
large protein numbers is well approximated by the chemical
Langevin equation and the Fokker–Planck equation. The
validity of these approximations often extend to systems
containing a moderate number of protein molecules
(Weinberger et al., 2005; Thattai and van Oudenaarden,
2002; Swain, 2004; Shibata and Fujimoto, 2005). These
equations invariably contain a skeleton deterministic part
and a diffusive fluctuating part around the deterministic
orbit. They can be derived from the more precise
microscopic description, the master equation, by linear
noise approximation in which the random part is almost
always assumed to be modeled by Gaussian white noise
(Gillespie, 2000; van Kampen, 1992; Kærn et al., 2005;
Thattai and van Oudenaarden, 2002). When the protein
number of even one species is very low, however, the
approximation is likely to break down and one needs to
solve the original master equation (Lan and Papoian,
2006). In this paper, we will show how complex, non-
Gaussian probability distribution functions (PDFs) arise in
simple reaction cascades when protein copy numbers are
small.

For the examples studied in this work, the deterministic
evolution is a monotonic relaxation to a unique stationary
state. When only the Langevin noise is considered, the
obtained PDFs often turn out nearly Gaussian, having
only a single peak (van Kampen, 1992; Kærn et al., 2005;
Lan et al., 2006) in the distribution profile. However, when
the exact master equation is solved, in some cases
distributions with multiple peaks arise. Consequently, in
these parameter regimes, the simple Langevin description
of noise is inadequate. This, in turn, suggests a strong
connection between the discreteness of the protein numbers
and the correlation among the chemical reaction events. It
was suggested that each peak of the PDF profile
corresponds to a stable steady state of the noisy system
(Garca-Ojalvo and Sancho, 1999). Thus, for the multi-peak
distributions discussed below, multiple stable states are a
common occurrence. These states may be classified as
either transient or permanent. In a recent paper by Arkin
et al. (Samoilov and Arkin, 2006), these kinds of
phenomena were termed ‘‘deviant effect’’, in analogy to
quantum deviation from classical mechanics in physics.

In the next section, we discuss a master equation which
describes stochastic signaling a specific 2-step cascade most
commonly encountered in cell enzymatic cascades. For the
parameters regime where multiply peaked distributions
arise, we provide approximate analytical solution to the
master equation (Lan and Papoian, 2006). In Section 3, we
compare our approximate results with exact Gillespie
simulation results, elucidating how the complexity of the
PDF profile emerges for this 2-step cascade. To show the
ubiquity of this phenomenon, we extend the computations
to a 3-step cascade. When a positive feedback loop is
introduced in the 3-step cascade, the distribution complex-
ity becomes diminished, which is discussed next. Finally,
we speculate on the possible biological significance of the
complex PDF profiles.
2. Analytical approach to stochastic dynamics in signal

amplification cascades

The potential complexities of the protein number PDF
profiles may be well demonstrated using the example of a
2-step signal amplification cascade. This seemingly simple
cascade shows nontrivial dynamical behavior, allowing us
to gain useful physical insights into cellular stochastic
signaling (Lan and Papoian, 2006; Lan et al., 2006).
Interestingly, the PDF evolution in the 2-step cascade can
be approximated analytically in the parameter regime
where multi-peak distributions are produced (Lan and
Papoian, 2006). This, in turn, allows us to gain additional
insights into the physical reasons behind the emergence of
complex protein number PDF profiles in stochastic
signaling.
The 2-step amplification cascade without feedback is

shown in the dashed box in Fig. 1. It is described by a
simple reaction scheme, where, R represents an inactive
receptor, which becomes activated into R� upon binding of
an external ligand (stimulus) with a rate g. When the
receptor is activated, it acts as an enzyme, catalyzing
the phosphorylation of the next kinase downstream
(Aþ R� ! A� þ R�) with a rate m. A� spontaneously
decays to A with a rate l and R� to R with a rate k.
Although the R� reaction is unary and independent of the
A reaction, the latter one is binary, making the system
nonlinear, thus, different from commonly modeled linear
reactions (Thattai and van Oudenaarden, 2001; Kierzek
et al., 2001; Swain et al., 2002; Ozbudak et al., 2002).
Additional downstream reactions are common in specific
biological pathways, where the way signals are transduced
is tuned by the network architecture. For example, a
subsequent downstream reaction is introduced in Fig. 1,
Bþ A� ! B� þ A�, where the activation of B up-regulates
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A activation, which is an example of a positive feedback
loop. We studied the 2-step cascade using both analytical
and numerical computations, while the 3-step cascade was
investigated only numerically.

Within a volume with linear dimensions of the Kur-
amoto length, x, diffusion mixes the reagents in a nearly
uniform manner (Kuramoto, 1974; van Kampen, 1992;
Markevich et al., 2004). If the reactions are considered in
the Kuramoto volume, as done in the current work, it is
reasonable to neglect the spatial heterogeneity. The typical
values of x are estimated in the range from 0.3 to 5mm for
the MAPK cascade (Schoeberl et al., 2002; Thorne and
Hrabětová, 2004; Elowitz et al., 1999). In our computation,
x�1mm was assumed. If the linear dimensions of the cell
are significantly larger than 1mm, then multiple Kuramoto
compartments may need to be considered to study spatial
patterns of signal activation on the scale of the whole cell.

The reaction rate parameters vary widely among various
signal transduction pathways. In the visual signal transduc-
tion cascade, for example, rhodopsin (Rh) activation is
controlled by the incident photons which may arrive, one
by one, within 1 s or even longer time interval in the single
photon experiment (Schneeweis and Schnapf, 1995) (thus,
g ¼ 1 s�1). The deactivation rate from Rh� to Rh is
approximately k ¼ 0:5 s�1. The activation rate of the
transducin is approximately m ¼ 120 s�1 and the deactiva-
tion rate is l ¼ 100 s�1 (Burns and Baylor, 2001). In a
different example, the rate constants may be around m ¼
0:0167 s�1 in a MAPK cascade (Markevich et al., 2004).
Furthermore, even for similar pathways, the reaction rates
may significantly vary depending on the cell type and the
stage of development. In the computations carried out in
this work, some biologically reasonable parameter values
were chosen to illustrate the phenomenon of multi-peak
distributions. Since the compartment size for all our
computations is fixed to x, all the reaction rates are given
in units of s�1. Correspondingly, the time unit of seconds is
used to report the results of our numerical calculations.

If Pðm; nÞ is used to denote the probability of having m

R�’s and n A�’s, then, the master equation for the 2-step
cascade in Fig. 1 can be written as

dP

dt
ðm; nÞ ¼ m½�mðN � nÞPðm; nÞ

þmðN � nþ 1ÞPðm; n� 1Þ�

þ l½�nPðm; nÞ þ ðnþ 1ÞPðm; nþ 1Þ�

þ g½�Pðm; nÞ þ Pðm� 1; nÞ�

þ k½�mPðm; nÞ þ ðmþ 1ÞPðmþ 1; nÞ�, ð1Þ

where N, a constant of motion, is the total number of A

and A� proteins. In Eq. (1), the first two terms describe the
A� A� reaction and the rest the R� R� reaction. The
nonlinear terms describe catalytic action of A% on R. If a
large number of inactivated receptors R are present, the
rate of conversion is almost independent of m and the R!

R� reaction becomes Poissonian. For simplicity, we assume
that this is the case in all the following calculations. If the
R! R� reaction is formulated as the usual birth–death
problem, our computation still applies with only minor
changes, with the same qualitative trends, as discussed below.
Eq. (1) can be efficiently solved using numerical simula-

tions of Monte Carlo type, called the Gillespie technique in
the context of stochastic chemical kinetics. In addition, in the
parameter regime we are interested in, a good analytical
approximation of the solution can be derived based on the
generating function formalism (Lan and Papoian, 2006). We
analyze below the structure of this solution and explain how
it may lead to complex PDF profiles.
For the 2-step cascade, the generating function Cðx; yÞ ¼P
m;n Pðm; nÞxmyn satisfies

qC
qt
¼ ð1� yÞ mxy

q2

qy qx
� mNx

q
qx
þ l

q
qy

� �
C

þ gðx� 1ÞC� kðx� 1Þ
qC
qx

. ð2Þ

In the limit of slow R� R� reaction, through time scale
separation and application of the method of character-
istics, an approximate solution of Eq. (2) was obtained
(Lan and Papoian, 2006)

Cðx; yÞ ¼
X1
m¼0

exp �
g

k
ð1� e�ktÞ

� �

�ð1� e�ktÞ
m g

k

� �m

fmðyÞ
xm

m!
, ð3Þ

where

fmðyÞ ¼ 1þ
mm

lþ mm
ð1� e�ðlþmmÞtÞðy� 1Þ

� �N

(4)

is the generating function of the A� distribution starting
with zero A� and at fixed m. From the generating function,
we can immediately obtain the average n̄ ¼ qC=qyjðx¼1;y¼1Þ
and the variance s2 ¼ ðq2C=qy2 þ n̄� n̄2Þjðx¼1;y¼1Þ.
Our next goal is to obtain physical insights into the

solution, Eq. (3). In the limit of slow R� R� reaction, the
A� A� reaction closely follows each R� R� reaction
trajectory. The conditional distribution PmðnÞ of A� at
time t is completely determined by the protein R� number
at the same time t in the given realization of the stochastic
trajectory. As can be inferred from Eq. (3), a binomial
distribution of A� corresponds to each m term in the
summation, centered around the conditional average
n̄m ¼ Nf m ¼ mmNð1� e�ðlþmmÞtÞ=ðlþ mmÞ. In fact, the
conditional average n̄m determines the whole binomial
distribution. The conditional variance s2m ¼ Nf mð1� f mÞ

indicates that when n̄m approaches 0 or N (i.e., f m ! 0 or
1), the distribution becomes narrower; while in the middle
n̄m ¼ N=2, the distribution achieves its maximum width.
Also note that the relative width wm of each peak

wm ¼ sm=n̄m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f m

Nf m

s
(5)

decreases with increasing N, thus, the discreteness repre-
sented by these peaks becomes easier to identify for larger



ARTICLE IN PRESS
Y. Lan, G.A. Papoian / Journal of Theoretical Biology 248 (2007) 537–545540
N. Therefore, the total distribution of A� may be
approximately considered as a superposition of Gaussian
packets. Depending on the height, width and spacing
between these packets, the total composite distribution can
be near Gaussian, strongly distorted Gaussian or being
comprised multiple peaks. The exact features of the
distribution are determined by the rate constant parameter
values and the initial conditions.

Generalization of the above analytical approximation
may be difficult for longer cascades. However, the physical
picture, which it provides, remains valid, even if compli-
cated by additional reactions and protein species. The
multi-peak character of probability distributions can be
inherited, diminished or completely suppressed in larger
cascades, depending on the reaction network architecture
and reaction rate parameters. The example of the 3-step
cascade is elaborated in the next section. In general, as the
total number of upstream proteins increases, the number of
distribution peaks may decrease and their discreteness may
become less clear. Since the initial discreteness originates
from the small number of protein copies, individual peaks
in the distribution may become smeared as the signal
propagates through the pathway, possibly merging into a
smooth, single-peak distribution. Next, we discuss the time
evolution of the PDF profiles for a few examples.

3. Exploring dynamical behaviors using numerical

simulations

3.1. Simulation details

We used the Gillespie algorithm to calculate the PDFs at
different times for the 2-step and the 3-step cascades. As
discussed below, the PDFs exhibit very different profiles in
different parameter regimes, demonstrating the dynamical
richness of the stochastic dynamics in these signaling
networks. For the 2-step cascade, we compare the results
from Eqs. (3) and (4) with the Gillespie computation, in
order to show the validity of our analytical approximation,
which, in turn, is used to uncover the origin of the PDF
profile complexity. For the 3-step cascade, we show that
this complexity may be reduced by introducing a positive
feedback loop. All Gillespie simulations were carried out
over 4� 105 trajectories to ensure sufficient convergence.
To clearly show the peak structure in the figures below, the
distribution graphs were trimmed near the origin in the
plot windows, when the probability of having few activated
proteins is very large. Also, some parts of the distributions
that were essentially zero were omitted. All computations
were started with zero copies of all activated species, R�,
and, A�;B�.

3.2. Transient and permanent multi-peak distributions in the

2-step cascade

In Figs. 2 and 4, the A� PDFs at two different times are
shown that correspond to the transient stage and equili-
brated stage of the distribution evolution. The circles mark
the results obtained from the Gillespie simulations, while
the solid lines are obtained from the analytical expressions,
Eqs. (3) and (4). These two different computations
perfectly agree with each other, indicating the effectiveness
of our approximation.
The PDF profile at the initial stage t ¼ 20 in Fig. 2(a) is

characterized by three peaks. The peak at the origin
corresponds to the realization of zero activated proteins in
the system. The other two peak correspond to the
generation of one, two or more protein R�’s. The second
peak is near NA� ¼ 13 which is the asymptotic average of
NA� for m ¼ 1. For m ¼ 2, this average should be around
21 where the third peak is truly located. At this stage, the
m ¼ 1 peak is perceivably higher than the m ¼ 2 peak. At
t ¼ 400, the system equilibrates. We only see one peak in
Fig. 2(b) at NA� ¼ 57 which is the average of NA� for
m ¼ 10. Therefore, in this case, the multi-peak distribution
profile is only transient. It implies a maximum trajectory
variability at the initial stage of the dynamics. When the
system becomes mature, the PDF turns Gaussian.
The cascade plot of the actual time evolution of the

system in Fig. 2 is shown in Fig. 3(a), where a snapshot of
the PDF was taken at time intervals of 10. Initially, all the
probability concentrates to the first peak at the origin.
Then the second peak appears and grows. Subsequently,
the third peak appears while the second one keeps growing.
When the fourth peak appears, the second peak starts to
decay. During the whole evolution, the first peak decays
monotonically while other peaks emerge, grow larger and
decay chronically in a time-ordered way until the
asymptotic average is reached. Finally, all the peaks merge
into one large Gaussian-like distribution (see Fig. 2(b)).
The above observations may be explained as follows. At

the initial stage t ¼ 20, the R� distribution concentrates at
the small R� number states m ¼ 0; 1; 2; . . . : The discrete-
ness is succinctly pronounced so that the conditional
averages n̄m of protein A� are relatively well separated.
Hence the individual peaks are visible even when they are
juxtaposed to form the total PDF. At the final equilibrium
stage t ¼ 400, R� distribution approaches its steady
Poisson distribution centered around the average
m̄ ¼ g=k ¼ 10. Compared to the t ¼ 20 distribution, two
things happened: the difference of n̄m’s between neighbor-
ing m’s decreases so that the neighboring binomial
distributions have a larger overlap; and also, the width of
each distribution increases when nm’s move closer to N=2
as discussed in Section 2. Under these two effects, all the
peaks merge into a single large peak, which only appears to
be slightly distorted from a Gaussian distribution.
The multi-peak character of distribution profiles can be

preserved even when the equilibrium is reached if the
discreteness of protein numbers remains pronounced. In
Fig. 4, the PDF of A� for a different set of parameter
values is shown. In this case, the asymptotic average m̄ ¼

g=k of R� is decreased to 2 to emphasize the discreteness. In
addition, the protein number NA� is increased from 100 to
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Fig. 2. The PDF of A� at two different times. (a) At the transient phase t ¼ 20, (b) at the equilibrium t ¼ 400. g ¼ 0:1, k ¼ 0:01, m ¼ 0:2, l ¼ 1:5 with

initial condition ðNR;NR� ;NA;NA� Þ ¼ ð100; 0; 100; 0Þ.

Fig. 3. (a) The time evolution of the transient multi-peak distribution for the same set of parameters as in Fig. 2. (b) One typical trajectory at the

equilibrated state with the same parameters as in Fig. 4. The arrows point to different ‘‘stable states’’.
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400 to sharpen the peaks around each R� trajectory by
decreasing the relative width of each peak of the A� PDF,
wm (see Eq. (5)). At the transient phase t ¼ 60 in Fig. 4(b),
four clear peaks of the protein A� PDF are seen that
correspond to different R� states m ¼ 0, 1, 2, 3. With
increasing m values, the peak heights monotonically
decrease while their widths increase. At equilibration time
of t ¼ 400, the peak for m ¼ 0 has decreased and all other
peaks have grown and become more distinct. Furthermore,
even a clearly discernible fifth peak is observed.

In Fig. 3(b), a typical reaction trajectory is shown,
generated after the equilibrium had been reached. From
bottom up, the four arrows in the figure clearly mark four
stable steady states that correspond to m ¼ 0, 2, 3, 4.
Hence, the multi-peak distribution profiles have clear
physical manifestation that can be observed.

The examples above demonstrate that multi-peak
distributions could either be transient or permanent in
which multiple stable points emerge. Both phenomena are
completely nonclassical that would not be reproduced
either from the deterministic description or within the
Gaussian noise approximation. Thus, when modeling
stochastic signaling in protein networks, one has to
consider the possibility of having these highly distorted
distributions.

3.3. Signal propagation in a 3-step cascade without feedback

In this section we demonstrate that multi-peak distribu-
tion profiles may be propagated and modulated along
longer cascades. We carried out Gillespie simulations for a
3-step cascade without feedback, shown in Fig. 1, to
investigate the PDF time evolution. Here, the A� A� and
R� R� reaction rates are similar to the ones reported
in Fig. 2. A snapshot of B� PDF at t ¼ 20 is shown in
Fig. 5(a), displaying two peaks. As discussed above,
the first peak at the origin indicates no reaction taking
place. The second peak around NB� ¼ 20 is very broad
and exhibits a plateau. Although there are fewer peaks
than in Fig. 2(a), a clear deviation from the Gaussian
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distribution is apparent, as demonstrated by the broad
plateau consisting of several closely spaced peaks. The
equilibrium PDF of B� at t ¼ 400 (see Fig. 5(b)) is nearly
Gaussian, peaked at the deterministic value of NB� ¼ 44
(cf. Fig. 2(b)).

More pronounced multi-peak distribution profiles are
also observed in the 3-step signaling cascade. The profiles
shown in Fig. 6 were generated using the same parameter
values for the R� R� and the A� A� reactions as reported
in Fig. 4. Besides the peak at the origin, two additional
peaks are observed for both the transient case (Fig. 6(a))
and the equilibrium case (Fig. 6(b)). As the system moves
towards equilibrium, the probability flows to the major
peak at NB� ¼ 60. Compared with the profiles shown in
Fig. 4, the number of peaks decreases. However, they
become much broader. This is rationalized by a much
larger quantity of the upstream protein A�, which results in
the nearby peaks being superimposed to give just one
broad peak. Two distinct peaks that appear in the PDF
profile carry the memory of the discreteness in the most
upstream R� R� reaction. Even though protein B� is
present at large copy numbers, the fluctuations are still very
large and cannot be accounted for by the usual Gaussian
statistics. This, in turn, indicates that the deterministic
dynamics cannot be relied upon to even qualitatively model
signaling in this system.

3.4. Introducing feedback in the 3-step cascade allows to

control distribution profiles

It is believed that cell reaction networks may take
advantage of noise in signal transduction. The noise, either
external or internal, can be modulated to suit different
needs of the cell. On the other hand, the large fluctuations
due to the discreteness of the initial triggering species, as
discussed above, can also be further controlled by the
downstream signaling networks. If a positive feedback loop
is added to the 3-step cascade, as shown in Fig. 1, then the
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noise fluctuations can be greatly reduced. The B� PDFs at
the transient stage t ¼ 60 and the equilibrated stage t ¼ 400
are shown in Fig. 7. The main peak of both PDFs is nearly
Gaussian. However, the profile shown in Fig. 7(a) (the
PDFs at t ¼ 60) indicates that there still exists a peak at the
origin (outside of the window shown in Fig. 7(a)) signifying
zero reaction events in the system. Therefore, the system
exhibits a transient bimodal distribution. However, the
second peak entrains a much larger probability, such that
the majority of reaction events follow a deterministic route
to the classical peak center at NB� ¼ 69. A small fraction,
however, defy the ‘‘classical’’ dynamics and remain at the
origin. At equilibrium, the PDFs obtained from the
Gillespie simulations are shown in Fig. 7(b). The exotic
set at the origin disappears and all the probability is
concentrated in the classical package at NB� ¼ 69. The
solid line is a plot of the Gaussian approximation of the
profile:

PðNB�Þ ¼
1ffiffiffiffiffiffiffiffi
69p
p exp

�ðNB� � 69Þ2

69

� �
, (6)

which largely agrees with the true distribution. Therefore,
the introduction of the positive feedback diminishes the
non-Gaussian behavior and partly recovers the effective-
ness of the Langevin or deterministic equation.
The effect of the positive feedback can be explained as

follows. Once A� is generated, it catalyzes the formation of
B�. Conversely, the B� feedback provides an extra reaction
channel for producing A�, independent of the R� catalytic
channel. The B� feedback alone can sustain the average of
B� at NB� ¼ 60. Thus, when A� and B� are being switched
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on, their averages follow a deterministic path to the final
large asymptotic values. On the other hand, in a specific
realization, A� may not be activated for some time, thus,
both A� and B� numbers would remain at the origin. This
explains the transient bimodal distribution, discussed
above in the context of Fig. 7(a). On the other hand, every
reaction trajectory will eventually result in activation of A�

and B�, where the protein numbers will approach and
fluctuate around the classical averages. Therefore, at
equilibrium, only one peak is produced, as observed in
Fig. 7(b). The positive feedback here acts as a unidirec-
tional two-state switch, manifestly reducing the fluctua-
tions.
4. Summary

We have demonstrated the possibility of obtaining
complex protein number PDF profiles in the context of
stochastic dynamics of cell signaling cascades. Different
PDF profiles were explored for stochastic signaling in the
2-step and the 3-step cascades by either solving the master
equation analytically or using numerical simulations. For
various parameter values, the PDFs are characterized by a
spectrum of qualitatively distinct profiles, ranging from
multi-peak profiles, to those having a plateau, and to
nearly Gaussian profiles. In addition, the distribution
characteristics evolve continuously with time, resulting in
interesting transient dynamics.

This nonclassical behavior cannot be captured by the
equations of deterministic chemical kinetics, or even the
commonly used chemical Langevin equation. This, in turn,
indicates that the discreteness of the chemical species in a
signaling cascade may qualitatively changes the system
behavior, resulting in significant deviation from the linear
noise approximation. For these cases, the master equation
formulation becomes a necessity for obtaining reliable
results.

One could hypothesize that the transient multi-peak
distributions may play important biological roles. For
example, in the embryonic development, the fate decision
of the early cell differentiation may depends on the protein
fluctuations in each individual cell (Yakoby et al., 2005).
The transient multi-peak PDF profile could provide a
convenient mechanism for the cell to choose its develop-
mental path. In the later stages, when the tissues and
organs are localized and start to grow, presumably,
stability and uniformity of the cell within each strain is
required (Arias and Hayward, 2006; von Dassow et al.,
2000), thus, the fluctuations should be suppressed.
Hence, only transient variability of the cell is needed. Of
course, the real biological network for controlling this
developmental process is extremely complicated (Freeman
and Gurdon, 2002). However, the idea of nonclassical,
transient complexity of the PDF profiles, put forward in
this work, can be extended to study these more complex
networks.
References

Arias, A.M., Hayward, P., 2006. Filtering transcription noise during

development: concepts and mechanisms. Nature 7, 34.

Berg, O.G., Paulsson, J., Ehrenberg, M., 2000. Fluctuations in repressor

control: thermodynamic constraints on stochastic focusing. Biophys. J.

79, 2944–2953.

Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J., 2003. Noise in

eukaryotic gene expression. Nature 422, 633.

Brastsun, D., Volfson, D., Tsimring, L.S., Hasty, J., 2005. Delay-induced

stochastic oscillations in gene regulation. Proc. Natl Acad. Sci. USA

102 (41), 14593–14598.

Bray, D., 1995. Protein molecules as computational elements in living

cells. Nature 376 (27), 307.

Burns, M.E., Baylor, D.A., 2001. Activation, deactivation, and adaptation

in vertebrate photoreceptor cells. Annu. Rev. Neurosci. 24, 779–805.

Cai, L., Friedman, N., Xie, X.S., 2006. Stochastic protein expression in

individual cells at the single molecular level. Nature 440, 358.

Cao, Y., Li, H., Petzold, L., 2004. Efficient formulation of the stochastic

simulation algorithm for chemically reacting systems. J. Chem. Phys.

121 (9), 4059.

Chaves, M., Sontag, E.D., Dinerstein, R.J., 2004. Optimal length and

signal amplification in weakly activated signal transduction cascades.

J. Phys. Chem. B 108, 15311–15320.

Elowitz, M.B., Surette, M., Wolf, P., Stock, J., Leibler, S., 1999. Protein

mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181,

197–203.

Freeman, M., Gurdon, J.B., 2002. Regulatory principles of developmental

signaling. Annu. Rev. Cell Devel. Biol. 18, 515–539.

Garca-Ojalvo, J., Sancho, J.M., 1999. Noise in Spatially Extended

Systems. Springer, New York.

Gillespie, D.T., 2000. The chemical Langevin equation. J. Chem. Phys.

113 (1), 297.

Gomperts, B.D., Kramer, I.M., Tatham, P.E.R., 2002. Signal Transduc-

tion. Academic Press, San Diego.

Grossman, A.D., 1995. Genetic networks controlling the initiation of

sporulation and the development of genetic competence in Bacillus

Subtilis. Annu. Rev. Genet. 29, 477–508.

Hansel, D., Mato, G., 2001. Existence and stability of persistent states in

large neuronal networks. Phys. Rev. Lett. 86 (18), 4175.

Heinrich, R., Neel, B.G., Rapoport, T.A., 2002. Mathematical models of

protein kinase signal transduction. Mol. Cell 9, 957–970.

Huang, K.C., Meir, Y., Wingreen, N.S., 2003. Dynamic structures in

Escherichia coli: spontaneous formation of minE rings and minD polar

zones. Proc. Natl Acad. Sci. USA 100, 12724–12728.

Kærn, M., Elston, T.C., Blake, W.J., Collins, J.J., 2005. Stochasticity in

gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451.

Kepler, T.B., Elston, T.C., 2001. Stochasticity in transcriptional regula-

tion: origins, consequences, and mathematical representations. Bio-

phys. J. 81, 3116–3136.

Kierzek, A.M., Zaim, J., Zielenkiewicz, P., 2001. The effect of transcrip-

tion and translation initiation frequencies on the stochastic

fluctuations in prokaryotic gene expression. J. Biol. Chem. 276,

8165–8172.

Kuramoto, Y., 1974. Effects of diffusion on the fluctuations in open

chemical systems. Prog. Theor. Phys. 52, 711.

Lan, Y., Papoian, G.A., 2006. The interplay between discrete noise and

nonlinear chemical kinetics in a signal amplification cascade. J. Chem.

Phys. 125, 154901.

Lan, Y., Wolynes, P., Papoian, G.A., 2006. A variational approach to the

stochastic aspects of cellular signal transduction. J. Chem. Phys. 125,

124106.

Lubchenko, V., Silbey, R.J., 2004. Control of chemical equilibrium by

noise. J. Chem. Phys. B 108, 19852–19858.

Markevich, N.I., Hoek, J.B., Kholodenko, B.N., 2004. Signaling switches

and bistability arising from multisite phosphorylation in protein kinase

cascades. J. Cell Biol. 164 (3), 353–359.



ARTICLE IN PRESS
Y. Lan, G.A. Papoian / Journal of Theoretical Biology 248 (2007) 537–545 545
Meng, T.C., Somani, S., Dhar, P., 2004. Modeling and simulation of

biological systems with stochasticity. In Silico Biol. 4, 0024.

Metzler, R., Wolynes, P.G., 2002. Number fluctuations and the threshold

model of kinetic switches. Chem. Phys. 284, 469.

Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D., van

Oudenaarden, A., 2002. Regulation of noise in the expression of a

single gene. Nature Genet. 31, 69–73.

Paulsson, J., Berg, O.G., Ehrenberg, M., 2000. Stochastic focusing:

fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl

Acad. Sci. USA 97 (13), 7148–7153.

Samoilov, M.S., Arkin, A.P., 2006. Deviant effects in molecular reaction

pathways. Nat. Biotech. 24, 1235.

Sasai, M., Wolynes, P.G., 2003. Stochastic gene expression as a many-

body problem. Proc. Natl Acad. Sci. USA 100 (5), 2374–2379.

Schneeweis, D.M., Schnapf, J.L., 1995. Photovoltage of rods and cones in

the macaque retina. Science 268, 1053–1056.

Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Müler, G., 2002. Computa-
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