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Abstract: The folding of R/! proteins involves most of the commonly known structural and dynamic
complexities of the protein energy landscapes. Thus, the interplay among different structural components,
taking into account the cooperative interactions, is important in determining the success of protein structure
prediction. In this work we present further developments of our knowledge-based force field for R/! proteins,
introducing more realistic modeling of many-body interactions governing the folding of !-sheets. The model’s
innovations highlight both specific topological characteristics of secondary structures and the generic
nonadditive interactions that are mediated by water. We also investigate how a coarse biasing of the protein
morphology can be used to understand the role of heterogeneity in protein collapse. Analysis of the simulation
results for three test R/! proteins indicates that the addition of the topological and many-body ingredients
to the model helps to greatly reduce the roughness in the energy landscape. Consequently, high quality
candidate structures for R/! proteins can be generated from simulated annealing runs, using very modest
amounts of computer time.

1. Introduction

Trying to understand how the nearly unique (but averaged!)
protein structures are encoded from sequences and thereby to
reproduce this process in silico has been a longstanding pursuit
in theoretical chemistry. Energy landscape theory explains the
basic physics of how Levinthal’s paradox is overcome, but
progress in structure prediction requires also attention to
chemical and biological detail. While refinement of low
resolution structures to the level of X-ray structures remains
difficult, the generation of low resolution models has progressed
greatly in recent years.1-3 Nevertheless reliably searching even
the low resolution conformation space for some protein topolo-
gies is still the fundamental step in making successful tertiary
structure predictions.
The folding of a !-sheet in a protein, with its hydrophobic

core having an extensive hydrogen bonding network, is a highly

cooperative process.4 In this paper we demonstrate that predic-
tions of low resolution structure for R/! proteins are significantly
improved when cooperative effects in !-sheet formation are
taken into account even at the coarse grained level. Long-range
water-mediated interactions, coupled with cooperative !-strand
formation potentials, help to overcome the intrinsic topological
frustration in the folding of R/! proteins which often makes
their folding slow even in the laboratory. It has long been
recognized that the formation of secondary structure elements
may help to reduce the conformation space of the system. On
the other hand, incorrect packing between such elements, if
formed permanently, may result in topological frustration for
the protein chain. When two protein segments approach each
other early in the folding process, alignment of interstrand
hydrogen bonds will promote !-sheet formation. The component
!-strands then become straight and stiff. Similar straightening
of !-strands is induced by interactions with the R-helices in
R/! proteins. These processes promote topological frustration,
where slow anisotropic rearrangements dominate folding dy-
namics. Nonadditive water-mediated interactions on the contrary
may diminish the effect of such topological frustration by
facilitating escape from incorrectly formed !-strand folds.
The pairwise-additive knowledge-based potentials, used

traditionally in protein structure prediction, have recently been
supplemented by many-body potentials that mimic the structural
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effects of water.5 We have found the addition of specific water-
mediated interactions significantly improves the quality of
structure prediction for large R-proteins.5 Since R/! proteins
are characterized by more complex topologies than all R-helical
proteins, the water-induced nonadditive forces are expected to
strongly affect the folding process. When strands are close in
sequence, as happens, in the formation of local !-hairpins, chain
diffusion is an efficient mechanism for bringing two segments
together. The interactions between segments are nevertheless
still required to be cooperative in order to stabilize the final
closure. On the other hand, when forming !-sheets, which
contain strands that are far apart in sequence, long-range
interactions play a crucial role. The formation of !-sheets is
thus strongly coupled to the formation of the correct globular
fold.
The starting point for our structure prediction potential

development is the Associative Memory Hamiltonian (AMH)
introduced by Friedrichs and Wolynes.6 The mathematical form
of the minimal frustration principle based on the ratio of folding
and glass transition temperature is then used to optimize the
model parameters. In this way, structure prediction potentials
that were pairwise additive were developed for R and R/!
proteins.7,8 For the R-proteins, the traditional pairwise additive
potentials have recently been supplemented by adding many-
body water-mediated potentials accounting for interstitial water.5
The water-mediated potential is context sensitive, depending
on the local protein density around a pair of residues. In
particular, two residues interact differently through water on
the protein surface from how they do through the protein, i.e.,
when they are buried in the core. The propensity for various
amino acids to be buried, yet another nonadditive effect of water,
was also taken into account through a local-density based burial
profile potential. In this work we have added similar water-
mediated potentials to the R/! protein structure prediction
Hamiltonian to investigate whether the improved treatment of
nonadditive interactions yields more nativelike !-sheet forma-
tion.
One of the important questions in folding R/! proteins is the

interplay between formation of R-helices and !-strands. In
general, helices are relatively local in sequence and form much
faster than the !-strands. These, possibly transient helical
structures, in turn may promote the directional collapse of the
!-strand regions. Formation of the helices helps to align the
!-strands, which in turn promotes the !-sheet nucleation process.
Consistent with these speculations, a recent experimental study
on folding of a single-chain monellin indicated that R-helical
content appears significantly prior to the chain collapse into an
oblate shape.9 80% of the !-content forms only after the helix
becomes well folded. These observations prompted us to
examine in more detail the role of helices in the collapse and
alignment of the !-strands.
Yet other important components of R/! protein structural

architecture are the turns and the loops that connect R-helices
and !-strands. The folding of turn regions in !-hairpins has been

found in some cases to couple strongly to the formation of the
segments they connect.10 Some loops exhibit strong internal
stability.Ω-Loops are notable examples. Turn regions are much
harder to predict using knowledge-based approaches than are
R-helices and !-strands. Nevertheless, !-hairpins with less than
eight residues can be reliably predicted using knowledge-based
approaches.11 Loops spanning a larger number of residues are
harder for bioinformatic approaches. Predicting the structure of
large loops is significantly hindered by their noncompact nature.
In such conformations, exposed to water, water-mediated
interactions play an important role for stability.
We also explore in this paper how topological frustration may

be alleviated by introducing a morphological bias into simula-
tions. Large scale morphology changes are slow even in the
laboratory. Since protein shapes usually deviate from spherical,
knowing their final dimension and biasing their global morphol-
ogy help to decrease the large configurational entropy of the
unfolded state and allow escape from early topological traps.
Such a morphological constraint bias may be analogous to the
cage effect thought to occur within chaperones.12 Low-resolution
information about the protein shape can often be obtained from
X-ray crystallography or cyro-EM experiments, even in cases
when an atomic level resolution protein structure has not been
solved.14 By carrying out simulations with different spherical
and nonspherical morphological bias potentials, we can study
systematically which specific protein conformations are pre-
ferred under the constraints of a particular shape.
In this paper we demonstrate that adding water-mediated

interaction potentials and cooperative !-strand formation po-
tentials to the structure prediction Hamiltonian for R/! proteins
leads to significantly improved prediction results. In particular,
we find that topological frustration in nonlocal !-sheet formation
during collapse is alleviated by the water interactions which
make escape easier from topological traps. We discuss in detail
how the nonadditivity effects and the morphological bias affect
the chain topology in protein folding. The article is organized
in the following way. First, we describe various terms of the
structure prediction Hamiltonian, including the cooperative
!-strand potentials, emphasizing the novelties introduced in the
present work. Next, the parameter optimization procedure is
briefly outlined. Finally, some specific structure prediction
results are discussed in detail for three R/! proteins. These test
proteins are not homologous to the training proteins that were
used in optimizing potential parameters, providing an objective
evaluation of the Hamiltonian’s performance.

2. Modeling

Our structure prediction efforts are based on the Associative
Memory Hamiltonian (AMH), which has been extensively
documented in prior works.7,8,15 In this section we briefly outline
the further features introduced in the paper. The AMH is
intrinsically a coarse-grained model, where each residue is
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represented by CR, C!, and O atoms. The Hamiltonian contains
two major components: (i) sequence-independent polymer
physics terms to describe the backbone interactions; (ii)
sequence-dependent knowledge-based potentials optimized to
achieve folding of a number of training proteins. The backbone
interactions include chain-connectivity, excluded-volume, Ra-
machandran, and chirality potentials. The sequence-dependent
interactions involve only CR-CR, CR-C!, and C!-C! pairs.
These interactions are grouped into three proximity classes
according to the sequence distance between the interacting
residues, as follows: short range (3 e |i - j| < 5), medium
range (5 e |i - j| e 8), and long range (|i - j| > 8). For the
short and medium classes, a pairwise interaction in the target
protein is associated with a corresponding pairwise interaction
in memory proteins whose structures are already known. The
short and medium range interactions are based on preliminary
alignments of sequence to the memories. In this level they play
a guiding role analogous to the choice of fragments in fragment
assembly methods.2,13 In our evaluation studies here, homolo-
gous proteins are rigorously excluded from the memory set.
Further details are given in the Appendix.
For the long-range proximity class of interactions, a simple

square well potential is used, unrelated to the memory proteins.
The terms of this function are partitioned into two wells, based
on the physical distance. The first well covers the 4.5 Å to 6.5
Å interval, representing a simple contact between two residues.
The second well covers the 6.5 Å to 9.5 Å interval, representing
protein-mediated or water-mediated interactions. To determine
whether an interaction is protein- or water-mediated, the local
density around each pair of residues is computed.5 When both
residues are not surrounded by many other residues, they will
instead be surrounded by water which mediates the inter-residue
interactions at an appropriate distance of 6.5 Å to 9.5 Å. On
the other hand, when one or both of the residues in a pair are
buried, then water mediation is switched smoothly to protein
mediation, using a many-body switching function.5 In addition
to the water-mediated potential between residue pairs, an
additional interaction term, based on the burial profile of each
amino acid, was introduced to describe the propensity of amino
acids to partition between water and the protein interior.5 The
burial profile potential includes three wells that characterize the
likelihood for a particular amino acid to be in low, medium, or
high local density. It is important to point out here that owing
to the context dependence both the second well potential in the
long-range proximity class and the burial potential are non-
additive.
The hydrogen bonding interactions were modified to include

additional geometrical constraints for the !-strands. Since a
!-strand has to be quite extended in order to effectively form
the hydrogen bonding network, we added a constraint term to
allow only small curvature of the strand in the !-sheet formation.
Furthermore, we set three sequence-separation-based proximity
classes for hydrogen bonding potentials: for the first class the
sequence distance for a pair of interacting residues is less than
19; for the second class it is between 19 and 45; for the third
class it is larger than 45. The hydrogen bonding potentials
include three terms to represent pairwise interactions, parallel
nonadditivity, and antiparallel nonadditivity, respectively (please
see Appendix for further details). When both pairwise and
nonadditive interactions are present, the hydrogen bonds

sometimes become too difficult to break, once they are formed.
To avoid strong local collapse of !-strands, we only turned on
two of the nonadditive terms (Λ2 and Λ3 terms in the Appendix)
when the interacting residues are both predicted to be in a
!-strand from a secondary structure prediction server JPRED.16
Here we hypothesize that these residues are the ones giving
the most energetic stabilization to the !-sheets. A similar
conjecture about the stabilization of !-strands has also been
discussed for the folding mechanism of !-hairpins.10

Several proteins containing !-components have been shown
to undergo specific collapse.18 These include, for example,
protein L and cold shock protein. The observations indicate that
the early stage of forming !-sheets leads to a heterogeneous
collapse of the protein chain. In the AMH, we treat this collapse
heterogeneity with the so-called “liquid-crystal” potential in
analogy to the nematic phase in liquid crystals.19 Since this
collapse involves forming either antiparallel or parallel strands,
we include two corresponding terms in the “liquid-crystal”
potential. In addition to the antiparallel and parallel strands with
large sequence separation among the strands, !-hairpins are
prominent in the architecture of the !-proteins. Since !-hairpins
are relatively local in sequence, it is possible to identify possible
!-hairpin candidates using secondary structure prediction results.
We employed the following criterion to determine possible
!-hairpin candidates. In a segment of 18 consecutive residues,
(i) if two !-strands of similar size and with an intervening small
loop region (less than eight) are predicted in the secondary
structure prediction, and (ii) if the loop region is predicted with
high probability (larger than 5 on the scale of 10), then we
conjecture that a !-hairpin is likely to form in this region. We
introduced a pairwise interaction for residues in this region to
bias the formation of a !-hairpin conformation (details are given
in the Appendix). Tuning these pairwise potentials changes the
turning tendency of the polypeptide backbone. Although the
protein chain becomes preferentially bent in specific places by
such a !-hairpin potential, the hairpins cannot form unless the
hydrogen bond interactions further stabilize the formation of !
sheets.
Finally, we introduced a potential to explicitly control the

collapse. The corresponding collapse potential biases the gyra-
tion radius of the protein chain. A harmonic constraint on the
gyration radius favors a spherical protein shape. However, a
nonspherical shape is common for many native protein struc-
tures. Therefore, an asymmetrical collapse potential can be quite
helpful. Here, we introduce such an asymmetrical collapse
potential, which independently constrains the gyration along x-,
y-, and z-axes. Using different bias parameters for each axis
controls the general shape of the collapsed protein. Thus,
experimentally derived information on the protein morphology,
available from many low-resolution techniques, may be incor-
porated into the prediction scheme by such an asymmetrical
collapse potential. Alternatively several values of these weak
constraints can be scanned in order to cover all possibilities in
sampling.
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3. Constrained Self-Consistent Optimization
A self-consistent optimization scheme was used to tune the

various interaction strengths in the Hamiltonian. The optimiza-
tion is based on the minimum frustration principle.20 The
energetic stabilization in the folding process is described by
the energy gap, δE, between the molten-globule states and the
nativelike states. At the folding temperature Tf, the energy gain,
δE, is balanced by the loss of configurational entropy Sc. Thus,
the folding temperature Tf is expressed as δE/Sc.20 In this
optimization, an important statistical characteristic of the folding
energy surface is the roughness of the energy landscape,
quantitatively described by the energy variance of molten-
globule states, !∆E2. The ratio of this variance to the entropy
of the molten-globule states, !∆E2/Smg, provides an estimate
of the polypeptide chain’s glass transition temperature Tg.
Maximizing the ratio of the folding temperature over the glass
transition temperature, Tf/Tg, provides a quantitative procedure
to minimize the frustration presented in a knowledge-based
Hamiltonian for a training set of proteins.
In this optimization scheme, additional constraints are

imposed upon the mean and the variance of the molten-globule
structures for each proximity class. Thus, the optimization
preserves the energy balance between different proximity
classes. We used 14 R/! proteins to “train” the Hamiltonian.
Decoy structures imitating the molten globule were self-
consistently generated from sampling at high temperature, 1.2Tf.
A nativelike ensemble of structures was also generated from
biasing sampling to the native region. A Lagrangian functional,
containing the constraints on the mean and variance, was
minimized for each proximity class.7

4. Results and Discussion
We carried out molecular dynamics simulations with tem-

perature quenching to search for low energy conformations
(more details about MD simulation are given in the Appendix).
Three R/! proteins, which were dissimilar to all of the training

proteins, were used to test our current model. For each protein,
24 simulated annealing runs were carried out. The best Q score
for each run is reported in Figure 1. The Q score is defined as
2 ∑i<j-2 exp[-(rij - rij

N)2/2σij
2]/(N - 1)(N - 2), which de-

scribes a critical assessment of all pairwise distances within
structures. The structure with Q ) 1.0 corresponds to the native
structure, while the conformations having Q values near 0.4
are typically characterized by an ∼6 Å RMSD fit to the native
structure. We used yet another similarity measure to compare
conformations, the Z score calculated with the combinatorial
extension (CE) algorithm.21 This score identifies a general
topological similarity disregarding the sequence information.
In general, a Z-score of 3.5 indicates significant structural
similarity, while strong structural similarity is achieved for
Z-scores larger than 4.0.
Three test proteins were CASP targets, with indices T089,

T120, and T251. The crystal structure analysis for these proteins
indicates they have diverse topologies. For instance, the !-sheets
in the test proteins are quite different in both their shapes and
their locations. T089 is a single domain from protein 1E4F (a
CASP4 target), taken from residues 86 to 166 in the PDB. In
the T089 native structure, a long three-strand !-sheet is formed
around the R-helix. The second test protein, T120, having 115
residues, is an N-terminal domain of human XRCC4DNA repair
protein 1FU1 (a CASP4 target). The native structure of this
protein is comprised of two sandwichlike !-sheets with two
helices connecting them. The third test protein, T251, which
contains 99 residues, was taken from protein 1XG8 (a CASP6
target). This protein is comprised from three outer helices, in
addition to a four-strand !-sheet mainly located in the core of
the protein. An interesting aspect of the T089 and T251 topology
is the nonlocal nature of !-sheets, with !-strands separated far
apart in sequence. This makes these proteins challenging targets
for structure prediction.
Prior to starting the simulations, we located possible !-hairpin

regions by using secondary structure prediction results16 for the
test proteins. However, for large loop regions, like the Ω loop

(20) Goldstein, R. A.; Luthey-Schulten, Z.; Wolynes, P. G. Proc. Natl. Acad.
Sci. U.S.A. 1992, 89, 4918. (21) Shindyalov, I.; Bourne, P. Protein Eng. 1998, 11, 739.

Figure 1. Best Q sampled in 24 annealing runs for proteins T089, T120, and T251.

A R T I C L E S Zong et al.

D J. AM. CHEM. SOC.



in T089, we did not find any specific structural information
from secondary structure prediction. Moreover, long loop
conformation may strongly depend on the folding of other
segments in a protein. Therefore, we did not add any biasing to
the residues in the long loop regions.
The structure prediction results for three test proteins,

evaluated using the Q score, are summarized in Figure 1. The
Q scores are plotted in the sorted order of numerical values.
For each of the three test proteins, we reached conformations
with a Q score greater than 0.35 within 24 short annealing runs.
Using the CE score measure, we found that about 10 annealing
runs for each protein sampled structures with a Z larger than
3.7, corresponding to rather native topologies. When the
nonspherical collapse potential was added to constrain the
overall topology of one of the targets, T089, the prediction
results were significantly improved. The best Q score reached
a high value of 0.45, exhibiting very strong similarity to the
native structure. Samplings of the best predicted structures for
three test proteins are presented in Figures 2, 3, 4, and 5. The
native structures and the contact maps are also shown for
comparison. Both structural drawings and the corresponding
contact maps indicate that the predicted structures are very
similar to the native structures, with some discrepancy in the
packing of secondary structure elements. The global RMSD
value for the predicted structures in Figures 2, 3, 4, and 5 are
10.5 Å, 6.3 Å, 6.0 Å, and 12.4 Å respectively. The larger values
reflect bad relative placement of correct large substructures. A
measure of the substructure quality is provided by LGA (Local
Global Alignment17). We used the LGA server to analyze this
aspect of our prediction results. We list the results as follows:
For the predicted structure in Figure 2, there are 49 out of 81
residues within 5 Å and the RMSD for the residues under this
distance cutoff is 3.02 Å. For the predicted structure in Figure
3, there are 56 out of 81 residues within 5 Å with an RMSD of
3.23 Å. For the predicted structure in Figure 4, there are 83 out
of 115 residues within 5 Å having an RMSD of 2.88 Å. And
for the predicted structure in Figure 5, there are 45 out of 99
residues within 5 Å with an RMSD of 2.29 Å.
To quantify further the predictive power of the improved

AMH, we use an umbrella sampling algorithm (setup details
are given in the Appendix) to compute the free energy profile
and the thermodynamic energy profile for T089 along the
reaction coordinate, Q (Figure 6). The average energy decreases
with increasing Q, indicating an energy landscape funneled
toward the native state. Furthermore, the asymmetrical collapse

potential improves the funneling for protein T089, compared
with the landscape having the isotropic collapse potential.
Although the energy decreases as the conformations become
more nativelike, the entropy loss reverses this trend and shifts
the minimum of the free energy to a relatively low Q value. In
Figure 6, for the asymmetrical collapse potential, the minimum
of the free energy curve is located at Q > 0.3 at T ) 1.00. For
the isotropic collapse potential, the broad minimum of the free
energy profile at T ) 1.00 is located around the molten-globule
region, with Q spanning from 0.2 to 0.3.
Thermodynamically, the average energy decrease strongly

funnels the configurations toward the protein native state. On
the other hand, the ruggedness of the energy landscape also
critically affects the folding dynamics. The energy ruggedness
leads to a glass transition at the low temperatures needed to
stabilize the native structure, making search via simulated
annealing difficult. To quantify the emergence of glassy
behavior, while lowering the temperature, we evaluated Q-
autocorrelation functions (Figure 7). These correlations provide
dynamic information on the ruggedness of the energy landscape
at any given temperature. With decreasing temperature, the
valleys of the energy landscape become too deep for the protein
chain to overcome by simple thermal fluctuations in the
simulation time allowed, leading to trapping in low energy
conformations. For protein T089, when T is lowered below 0.9,
the system no longer efficiently explores the configurational
space on the simulation time scale. We did find that the glass

Figure 2. A predicted structure for protein T089 with the Q ) 0.38 (CE: Z ) 3.9) (left), the native structure (middle) and the contact map (right). The
prediction was generated with the spherical collapse potential.

Figure 3. A predicted structure for protein T089 with the Q ) 0.46 (CE:
Z ) 4.1) (left) and the contact map (right). The prediction was generated
with the nonspherical collapse potential.
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temperature for T089 with these innovations is significantly
lower than the results from the previous AMH study on this
system.8 We attribute this lowering to the water-mediated
interactions and the adjusted !-potentials that, in turn, help to
decrease the energy ruggedness of the landscape of the molten-
globule states, resulting in a glass transition below T ) 0.9.
Reducing the energy ruggedness allows efficient sampling of
nativelike structures at lower temperatures, since the energy
gradient favors native structures, while the entropy plays a lesser
role when the temperature is low. Therefore, the depression of
the glass temperature explains why good quality structures are

sampled in our simulated annealing runs, even though the
minimum of the free energy for T089 is around the molten-
globule states at T ) 1.00.
Use of the asymmetrical collapse potential decreases the

number of available topologies compared with the isotropic
collapse potential. The resulting entropy reduction for the
molten-globule states shifts the minimum of the free energy
profile for T089 to a more nativelike region. For the isotropic
collapse potential the main free energy well is located around
0.2 < Q < 0.3 with CE scores reaching 3.5 (Figure 8), while
for the asymmetrical collapse potential the main free energy

Figure 4. A predicted structure for protein T120 with the Q ) 0.39 (CE: Z ) 4.7) (left), the native structure (middle), and the contact map (right).

Figure 5. A predicted structure for protein T251 with the Q ) 0.37 (CE: Z ) 3.6) (left), the native structure (middle), and the contact map (right).

Figure 6. Free energy calculations for protein T089. (a) Free energy as a function of Q at T ) 1.0. (b) Energy as a function of Q at T ) 1.0. The line with
circle symbols corresponds to the spherical collapse potential; the line with square symbols corresponds to the nonspherical collapse potential; the line with
cross symbols corresponds to the result from the previous model without water-mediated potentials and that did not contain the modifications in !-potentials.
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well is located around 0.3 < Q < 0.4 with CE scores reaching
as high as 4.0. The free energy cost to reach Q ) 0.4 is only
about 3kT for the asymmetrical collapse potential, suggesting
that in any given simulation run we expect about e-3 ≈ 5%
chance to sample Q > 0.4 structures per relaxation time.
Furthermore, from a statistical viewpoint, we can sample regions

of higher free energy by carrying out additional annealing runs.
For instance, we estimate that Q ≈ 0.55 (RMSD ≈ 4 Å)
structures for T089 may be generated using 30 CPU-day
computational resources.
Both the folding of the secondary structure elements and

the interplay between forming R-helices and !-sheets are
important for determining the overall tertiary architecture. In
Figure 9, we plot the folding progress of individual secondary
structure elements for simulated annealing runs that generated
the highest Q score. The prediction of individual secondary
structure segments is measured by Qseg ) ∑{i,j}∈segΘ(rc - rij

N)
exp[-(rij - rij

N)2/2σij
2]/∑{i,j}∈segΘ(rc - rij

N). From the prediction
of each secondary structure segment of T089 and T120, we
observe that R-helices form much earlier than !-sheets. Only
when the R-helices reach Q ≈ 0.6, does the nativeness of !
sheets start to appreciably increase. In addition, we find that
the R-helices exhibit residual structure signals even at high
temperatures. On the other hand, the !-sheets do not exhibit
any residual structures at high temperatures, when the overall
Q values are around 0.1. The early folding of R-helices provides
a nucleus of hydrophobic surface that helps to align the
!-strands.
Moreover, we provide a sequence of folding snapshots in

Figure 10 to illustrate the progression of conformations in the

Figure 7. Q autocorrelation function at different temperatures for protein
T089 (the collapse potential is spherical). The x-axis is time measured in
units that correspond to roughly 250 ns of laboratory time.

Figure 8. Free energy for protein T089 as a function of Q (x axis) and CE score (y axis) at T ) 0.9. (Left panel) Using the spherical collapse potential.
(Right panel) Using the nonspherical collapse potential.

Figure 9. The folding of secondary segments of protein T089 (a) and protein T120 (b) in five annealing runs which generate a Q score larger than 0.35.
For protein T089: the R-helical region covers residues 23-39; the !-sheet region covers residues 4-13, 43-54, and 70-80. For protein T120: the R-helical
region covers residues 49-58 and 63-74; the first !-sheet region covers residues 2-8, 18-24, 31-37, and 41-48; the second ! sheet region covers
residues 84-88, 94-101, and 104-112. For protein T089, the spherical collapse potential was used.
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!-sandwichlike protein T120. An initial collapsed conformation
is shown in Figure 10a. As the temperature is decreased, the
helix starts to form with some alignment of !-strands (Figure
10b). Partial formation of the N-terminal and C-terminal sheets
were observed (Figure 10c and d). As temperature is further
decreased, the full hydrogen bonding network is formed,
producing a very nativelike conformation.
A prominent role of the !-sheets is apparently to shield the

hydrophobic core from the hydrophilic surface. With the C!
atoms considered as the interaction centers and with the above-
mentioned switching mechanism, the water-mediated potential
differentiates between the hydrophobic and the hydrophilic sides
of a !-sheet. Furthermore, before two segments reach each other
within 6 Å and start to form hydrogen bonds, the water-mediated
interactions encourage the approach of the !-strands in the range
from 6.5 Å to 9.5 Å. There is “water-mediated” closure of
!-strands. One snapshot of closing !-strands showing such
water-mediated interactions is presented in the left panel in
Figure 11. The closing of the strand in blue by the water-
mediated interactions is shown as dashed lines. In the right panel
of Figure 11, we present the predicted structure from Figure 5,
highlighting the water-mediated interactions. We observe that
the shell filled with water-mediated interactions covers well the
hydrophobic core region. Overall, the predicted structures that

are nativelike contain a favorable network of water-mediated
interactions surrounding the protein core.

5. Conclusion

In summary, our work demonstrates that correct modeling
of cooperativity that is largely mediated by water is crucial for
obtaining accurate structure predictions of !-sheets in R/!
proteins. First, many weakly specific tertiary interactions are
involved in forming !-sheets. During the early events of protein
folding, these tertiary interactions may occur prior to locking
of hydrogen bonds between !-strands. On the other hand, in
the case of helices, the local hydrogen bonds appear prior to
forming those tertiary interactions. Water-mediated interactions
are important for the recognition between !-strands. They help
to reduce the topological frustration, which in turn leads to more
efficient sampling of structures having nativelike packing. In
R/! proteins, the early folding of R-helices provides patches of
hydrophobic surface to nucleate the alignment of !-strands. This
mechanism can be incorporated into a general capillary picture
as discussed by Wolynes.22 The exact timing of events between
nucleation processes and the formation of secondary structures
regulates the collapse of proteins. In the early stages of protein

(22) Wolynes, P. G. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 6170.

Figure 10. A sequence of snapshots was taken from a simulated annealing trajectory for protein T120. The contact map is drawn below each structure. This
trajectory eventually sampled a Q ) 0.39 structure. Snapshots (a-e) are sampled at T ) 1.75, 1.5, 1.48, 1.44, and 1.17, respectively.

Figure 11. Long range interactions in a predicted structure for protein T120. (Left) One structure at the early stage of folding with Q ) 0.25. (Right) The
well folded structure with Q ) 0.39. Spheres represent !-atoms. Dashed lines with magenta color present the contacts with distances between 4.5 Å and 6.5
Å. Dashed lines with black color represent the water-mediated interactions with distances between 6.5 Å and 9.5 Å.
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folding, the collapse can be either nonspecific or specific. Our
comparative analysis indicates that potentials that favor early
specific collapse over early nonspecific collapse significantly
improve structure prediction. Water-mediated potentials may
be combined with higher resolution models that include more
details of the side chains that take into account efficient packing
of nativelike protein structures.
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