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Abstract: It has been recognized in the last few years that unstructured proteins play an important
role in biological organisms, often participating in signal transduction, transcriptional regulation,
and a variety of other regulatory activities. Various hypotheses have been put forward for the
ubiquity of the unfolded state; rapid turnover, faster or more specific binding kinetics, multifunc-
tionality may all possibly explain apparent ubiquitousness of unfolded proteins in eukaryotic cells.
In this paper we extend the energy landscape theory of protein folding to construct an analytical
model of how binding and folding are coupled thermodynamically when the energy landscape is
partially rugged. To deduce the parameters that enter the theory, which is based on Generalized
Random Energy Model, we have analyzed in a bioinformatic sense a large structural database of
more than 500 protein complexes. We find that Miyazawa–Jernigan contact potential shows similar
energy gaps for folding for both hydrophobic and hydrophilic proteins, but that for binding contacts
hydrophobic interfaces turn out to be funneled while hydrophilic ones are antifunneled. This
suggests evolution has found a mechanism for avoiding frustration between folding and binding by
making use of indirect water-mediated interactions. By juxtaposing the monomeric protein folding
free energy profile in the protein complex database with another database consisting of only
well-folded monomers, we estimate that at least 15% of monomers in the former database are
unfolded in the absence of partner protein interface interactions. When employing the parameters
characteristic of these unfolded monomers to construct binding/folding phase diagrams, we find that
these monomers would indeed fold if sufficiently stabilizing binding contacts, consistent with that
fold, are formed. © 2003 Wiley Periodicals, Inc. Biopolymers 68: 333–349, 2003

Keywords: bioinformatics; binding; folding; energy landscape theory; Generalized Random En-
ergy Model; Miyazawa–Jernigan contact potential; binding-folding funnel

INTRODUCTION

Protein–protein interactions play the role of the ner-
vous system in the cell, orchestrating and guiding
such vital processes as cell proliferation, differentia-

tion, and death.1 Given the paramount importance of
protein–protein interactions in biology and health sci-
ences, the elucidation of the mechanism of these in-
teractions has attracted enormous research effort in
the last century or so. The celebrated “lock-and-key”
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paradigm of protein association2,3 may be rightly con-
sidered as one of the key bedrocks of modern molec-
ular biology. Yet another model for protein–protein
interactions, the so-called induced fit mechanism,4 has
also helped to provide immensely useful insights into
biological processes where conformational plasticity
plays an important role. In this paper we begin to
build a basic analytical theory for a third mechanism
of protein association, in which large unstructured
pieces of protein chain order uniquely only when
binding is initiated.

The lock-and-key mechanism of protein binding
has been viewed by the bulk of biological scientists as
the universal way proteins interact with each other. In
the lock-and-key description two proteins are imag-
ined as being rigid bodies with sterically and electro-
statically complementary surfaces that lock into each
other upon interaction. Important biological functions,
such as enzyme catalysis, immunological recognition,
or molecular discrimination, require very fine control
of the protein’s three-dimensional structure, thus
these proteins are expected to have a rigid folded
structure in their active state.5,6 The theoretical de-
scription of a lock-and-key process can be captured by
docking protocols in which two rigid proteins or a
rigid protein and a ligand are brought together and
screened using shape- or energy-based methods.7

Such protocols are a mainstream of a modern drug
design.8,9 As for the calculation of the kinetic rate
constants of protein association, it has been recog-
nized that a naive elastic collision model based on
estimating the rate of “lucky” encounters when the
“key” and the “lock” are perfectly aligned for the
interaction to succeed produces many orders of mag-
nitude smaller rate constants than experimentally ob-
served. To explain this nonspecific adhesive encoun-
ters along with rotational diffusion, electrostatic steer-
ing, and guidance by coupling to the funneled
landscape have been put forward as three routes to the
observed, rate constants that have values close to the
diffusion limit for small molecules.10–12

The more complex induced fit mechanism was first
invoked to explain the allosteric control of proteins by
ligands, where an alternative, less favorable protein
conformation in equilibrium with the native state in-
teracts preferentially with the given ligand, which in
turn shifts correspondingly the conformational equi-
librium.1 The equilibrium between tense T macrostate
and relaxed R macrostate is influenced by ligand
binding, which in turn leads to concerted or sequential
conformation changes in a multisubunit protein.1 The
shifting of the conformational equilibrium toward a
less populated state due to ligand binding has been

recently explored within the context of the energy
landscape model.13–15

Yet the deviations from the lock-and-key picture
may be more profound. It has become increasingly
apparent in the last decade or so that a large number
of interacting proteins, especially those implicated in
eukaryotic cell differentiation and signaling, are either
very flexible or completely unfolded in the free state,
implying the simultaneous occurrence of binding and
folding.5,6,16–22 Although it might seem somewhat
counterintuitive that fully functional important pro-
teins in the working cell would exist as random coils
or molten globules, Wright and Dyson have recently
provided several powerful arguments that may ex-
plain the role of unfolded proteins in the cell.5,6 For
instance, they argued, cell cycle, transcriptional, and
translational proteins will be targeted for rapid turn-
over by being unfolded, thus providing an additional
lever of control. Promiscuous binding, allowing non-
linear control of many processes, and in a contrary
sense, higher specificity have both been suggested as
additional reasons for having highly floppy proteins in
the cell.6 As for the ubiquity of at least partially (�50
residues) unfolded monomers in biological organ-
isms, over 100 unique functioning proteins having
more than 250 homologs have been experimentally
verified as being partially unstructured.23 Neural net-
work studies by Dunker and co-workers have sug-
gested that up to 30% of sequences of eukaryotic
genomes may correspond to proteins containing large
disordered segments.24

Since the importance of highly unstructured pro-
teins has been recognized only recently, only a few
theoretical papers have begun to address this issue and
its implications. Shoemaker, Portman, and Wolynes
have investigated the kinetic aspects of simultaneous
binding and folding, concluding that being unfolded
leads to somewhat faster rate of binding due to pro-
tein’s greater capture radius (the so-called “fly-cast-
ing” mechanism).25 Terada, Sasai, and Yomo have
applied the analytical techniques of energy landscape
theory to study the actin–myosin system, suggesting
that the ATP hydrolysis energy is channeled into local
unfolding of myosin head, which in turns drives the
unidirectional motion of actomyosin molecular mo-
tor.26

In contrast to these papers we focus here on the
thermodynamics of folding/binding while accounting
for the complexity of the protein energy landscape.
The energy landscape picture of protein folding,
which has proven to be very useful in rationalizing
many details of the folding phenomenon,13,27,28

serves as the starting point to derive this connection
from the statistics of interresidue interactions and
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polymer physics. It also is a natural approach to the
question of specificity and binding promiscuity,
which we hope to address in future papers. We obtain
a free energy expression for binding–folding. This
theory contains several statistical parameters that we
infer by bioinformatically analyzing a structural data-
base of more than 500 carefully chosen protein com-
plexes compiled by Ben-Tal and co-workers.29 By
comparing the folding free energy profile between the
protein complex database and another single mono-
mer database, we estimate the smallest fraction of
monomers that are expected to be unfolded in the
former database. For the model parameters character-
istic of unfolded proteins, we show that native binding
interactions do indeed lead to simultaneous folding as
well.

BASIC THEORY

To set up the model we partition the system of inter-
acting proteins into two major thermodynamic
states—the associated complex and the dissociated
monomers. The former complex may be divided fur-
ther into several additional substates, which differ by

the degree of folding of partner proteins as well as by
the degree of ordering of the interface contacts. The
transition between these various associated states is
the major goal of our study; the thermodynamics of
the dissociated state may be analyzed in a straightfor-
ward manner in the limit of low concentrations.

According to our model, unfolded protein A forms
a transient collision complex with rigid protein B, as
schematically depicted in Figure 1. During the initial
phase of the encounter complex formation, protein A
stays unfolded and forms random binding contacts
with the surface of B. If the energy landscape for
binding is strongly funneled and is correlated with the
folding funnel, then the complex undergoes a binding/
folding phase transition. Otherwise, if in addition the
nonnative binding interactions are not strong enough,
the complex dissociates.

In order to quantify the description of the sequence
of events given above, we introduce two order param-
eters, Qf and Qb, which indicate the degree of simi-
larity between the set of folding and binding contacts
in the given configuration and the native folded/bound
reference state. These order parameters vary from
zero in the completely nonnative state to one in the
reference native state. Our goal is to develop thermo-

FIGURE 1 The schematic representation of floppy protein A interacting with the surface of rigid
template protein B.
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dynamic formalism that will allow us to calculate free
energy as a function of these two order parameters,
which in turn might indicate the necessary conditions
for folding and/or binding phase transitions.

Derivation of the Free Energy
Expression

The Generalized Random Energy Model (GREM) of
protein folding serves as a convenient starting point
for the development of our binding/folding coupling
model. According to the GREM picture of protein
folding, the multitude of protein conformations is
partitioned into strata in such a way that the confor-
mations having the same similarity measure with the

unique native state are grouped together30 (Figure 2).
These ensembles of states are then treated statistically
within the context of the Random Energy Model
(REM) formalism, as having a particular energy mean
and the variance. As the similarity measure Q is
increased from 0 to 1, more narrow strata are cut on
the energy folding funnel (see Figure 2), leading to
conformational ensembles that are low in energy,
have smaller energy variances as well as smaller
numbers of available states (i.e., lower entropy). The
interplay between the lower mean energy on one hand
and the lower entropy and the energy variance on the
hand determines the shape of the protein folding free
energy landscape. Plotkin, Wang, and Wolynes have

FIGURE 2 Basic premises of the stratum GREM formalism. (a) A given structure (in magenta)
has a number of overlapping contacts with the native structure (red); (b) energy funnel as a function
of overlap parameter Q.
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derived the following expression for the free energy
of this model:30

F�Q� � zN�EfQ � NS 0�Q�T �
zN�1 � Q2��E2

2kBT
(1)

where N is the protein chain length, z is the number of
contacts per residue, �Ef is the energy gap per residue
between the native state energy, and the average en-
ergy of the denaturated ensemble, �E2, is the energy
variance per residue of the denaturated ensemble, s0 is
the conformational entropy per residue, and T is the
temperature.

In order to derive a free energy expression equiv-
alent to Eq. (1) for the case where binding and folding
contacts occur simultaneously (Figure 1), we start
from the following microscopic statistical contact
Hamiltonian:

H � Hf � Hb (2)

Hf � �
i�j

��ij
f �ij

f �ij
f � �1 � �ij

f ��ij
f �ij

nn� (3)

Hb � �
i@A,j@B

��ij
b�ij

b�ij
b � �1 � �ij

b��ij
b�ij

nn�, (4)

where Hf and Hb are folding and binding Hamiltoni-
ans respectively; �ij is 1 if i and j are in contact in the
native conformation, 0 otherwise; �ij is 1 if i and j are
in contact in the given conformation “a,” 0 otherwise;
�ij

b/f and �ij
nn are random energy variables for native

and nonnative contacts respectively (f/b subscripts/
superscripts refer to binding and folding). The factor
�i, j �ij

b/f�ij
b/f is the total number of contacts shared

between conformation “a” and the binding/folding
native conformations, while �i, j �1 � �ij

b/f��ij
b/f is the

number of contacts unique to “a.” Since a certain
number of contacts are shared between “a” and the
native binding/folding conformations, those shared
parts of Hamiltonian will lead to correlations in the
energy of two structures. Thus, the total energy of the
native folding and binding states as well as confor-
mation “a” may be partitioned in the following way:

Ef
0 � Eaf � E�f (5)

Eb
0 � Eab � E�b (6)

Ea
0 � Eaf � Eab � E�a. (7)

Those contacts that are shared between “a” and the
native folding and binding contacts lead to common

energy terms Eaf and Eab, while contacts unique to
each conformation are denoted by primes. Since the
energy terms on the right side of Eqs. (5)–(7) are
random variables comprised from the respective sums
of the microscopic contact energy random variables
(�’s), the simultaneous occurrence of Eaf/Eab in more
than one equation couples the resulting conformation
energies (i.e., Ef

0, Eb
0, and Ea

0). If we require that
native folding and binding energies Ef

0 and Eb
0 adopt

certain (low energy) values, then the conditional prob-
ability of finding Ea

0 at a particular energy may be
found from

P�Ea
0�Ef

0, Eb
0� �

���Ea
0 � H�Qf, Qb�	��Ef

0 � Hf�Qf�	
� ��Eb

0 � Hb�Qb�	
Eaf,Eab,E�f,E�b,E�a

���Ef
0 � Hf�Qf��
Ef���Eb

0 � Hb�Qb��
Eb

,

(8)

where � denotes the Delta function, and angular
bracket subscripts indicate averaging with respect to
the corresponding random energy variables. If �(Qf,
Qb) is the total number of available states, then the
microcanonical entropy may be written as

S�Ea
0, Qf, Qb� � kBln���Qf, Qb�P�Ea

0�Ef
0, Eb

0�� (9)

The temperature dependence is introduced with the
help of a standard relation, �S(Ea

0)/�Ea
0 � 1/T, lead-

ing to the following expression for free energy:

F�Qf, Qb� � zfN�EfQf � zbN�EbQb � NS 0�Qf, Qb�T

�
zfN�1 � Qf��1 � 	fQf���f

2

2kBT

�
zbN�1 � Qb��1 � 	bQb���b

2

2kBT
(10)

where 	 is the degree of native contact heterogeneity
(i.e., the ratio of ��native

2 to ��nonnative
2 ) and �Ef and

�Eb are the gaps between the energies of the native
folding and binding states and the average energy of
the nonnative states ensemble. A quick analysis of the
free energy expression given above reveals that the
folding and binding coordinates become intimately
coupled through the nonadditive entropy term, S0(Qf,
Qb)T. In addition, several unknown parameters enter-
ing Eq. (10) need to be determined in order to con-
struct corresponding phase diagrams. The derivation
of an entropy formula as well as the parameterization
of Eq. (10) is the subject of the next two sections.
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Entropy Model

One has a number of choices of various degree of
sophistication to set up a model of entropy for a
protein chain as a function of some average order
parameters. For instance, for the case of a single
protein folding, Plotkin, Wang, and Wolynes have
used the similarity measure Q between the given
structure and the native structure as the reaction co-
ordinate, deriving a polymer physics based entropy
formulas for low and high Q limits and interpolating
in between.31 In the current context of binding and
folding, a similar procedure, although possible, would
become excessively cumbersome. This prompted us
to use a simpler quasi-linear model, since the earlier
computer simulations of simplified polymer chains
suggested the near linearity of entropy as a function of
Q in the context of protein folding.32,33 Our present
approach is to calculate entropy for four corners of the
Qf � 0 . . . 1, Qb � 0 . . . 1 domain and interpolate
in between with a bilinear {Qf, Qb} form.

The Qf � 1, Qb � 1 vertex corresponds to the
completely ordered bound/folded state, thus its en-
tropy, S(1, 1), serves as a reference point, taken to be
zero for convenience. The Qf � 1, Qb � 0 corner
represents the natively folded protein which under-
goes solid-body rotational-translational diffusion,
sampling the surface of the partner protein. The en-
tropy for this state, S(0, 1), is calculated below. The
Qf � 0, Qb � 1 state corresponds to ordering of
interface contacts, while the rest of the protein being
unfolded, and we calculate its entropy S(1, 0) using
polymer physics techniques. Finally, the Qf � 0, Qb

� 0 vertex corresponds to an unfolded protein exe-
cuting a rotational-translational diffusion near the sur-
face of the partner protein, and we estimate the cor-
responding entropy S(0, 0) as a sum of the entropy of
the unfolded free chain and the abovementioned ro-
tational-translational entropy S(1, 0).

Given the entropy values for the four corners of the
Qf, Qb quadrant, the bilinear formula in Eq. (11)
incorporates those into a smooth (quasilinear) surface,
interpolating in between:

S0�Qf, Qb� � �1 � Qf��1 � Qb�S�0, 0� � Qb�1

� Qf�S�0, 1� � Qf�1 � Qb�S�1, 0� (11)

For the entropy of folding of the isolated free
protein, we use the experimental estimate of 3kB

per residue by Freire and co-workers.34–36 Since S(0,
0) is the sum of this entropy and S(1, 0), we proceed
next to estimate the latter quantity.

In the absence of native binding contacts, the pro-
tein is free to explore the surface of the partner pro-

tein. To be considered as part of the associated state,
the center of mass of the protein, which is idealized as
being spherical, must remain within the region of
space enclosed by two concentric spheres, as depicted
in Figure 3. The thickness of this layer is determined
by the contact cutoff, 6.5 Å in our model. As for the
completely ordered reference state, Qf � 1 and Qb

� 1, the protein’s center of mass is restricted to move
only within the region bound by the intersection of
two concentric sphere mentioned above and a cone
with solid angle 
 � � and � � �. The volume
enclosed in that region is indicative of the size of the
native basin for the center of mass of the completely
ordered bound and folded protein. Solid angle � is
determined by the intersection of a contact sphere
centered on surface of the central protein with pro-
tein’s surface (see Figure 3). The reduction in trans-
lational entropy when native binding contacts are
formed, due to the additional confinement of protein’s
center of mass, is computed as

�Stransl � kBln�1

9

d2

R2� (12)

where d indicates contact radius and R indicates pro-
tein’s radius. For the average radius of 19.3 Å in the
protein complex database, we have calculated 4.4 kB

loss of translational entropy upon ordering of inter-
face contacts.

When no native binding contacts are formed, the
protein is free to diffuse rotationally around its prin-
cipal axes. The rotational entropy associated with
such motion is lost to a certain degree, when the
native interface forms. In the latter case, the rotational
motion of the protein is confined to an angle compa-
rable to � around each of the three principal axes
(Figure 3). By computing the rotational partition func-
tions for free rotation and for constrained rotation, the
reduction in rotational entropy due to native interface
formation may be calculated as

�Srot � kBln
�2�1 � cos���	

82 (13)

where � was defined above. For the average protein
radius of 19.3 Å and contact radius of 6.5 Å, we
estimate 5.3 kB loss in solid-body rotational entropy
due to confinement upon native binding contact for-
mation. Thus, the combined entropy loss of 9.7 kB

defines the value for S(1, 0). In addition, it has to be
added to 3 kB per residue estimate of free chain
entropy of folding to obtain S(0, 0). Notice, however,
that for a 200 residue protein this amounts only to
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additional 0.05 kB entropy per residue, i.e., very small
compared with the folding entropy.

The last vertex to be determined is Qf � 0 and Qb

� 1, in which case interface contacts are formed in
full but the protein is still unstructured internally. The
entropy of folding for free chain, Sf

0, is reduced by a
certain factor if the protein forms native contacts on
the binding partner protein’s surface (Figure 4). This
reduction of entropy may be attributed to the follow-
ing three sources: (1) residues directly in contact with
surface loose all free chain entropy, (2) there is a
reduction in entropy due to end segments, (3) there is
a reduction in entropy due to surface loop formation.
By analyzing structurally the database of 500� pro-
tein–protein complexes mentioned above, we have
obtained the ratios of the number of residues in se-
quentially in contact, the number in the surface end
segments, and the number in surface loops as 0.13:
0.40:0.47. In addition, we have extracted from the
structural database the frequency of end segment and
surface loop formation as a function of chain length.
Thus, if the reduction in entropy were to be known for
end segments and surface loops as a function of

number of residues involved, the total reduction in
entropy [i.e., S0(Qf � 0, Qb � 1)] may be easily
computed by using the database derived structural
partitioning coefficients to do the summations.

FIGURE 3 Entropy of the folded protein, which moves diffusively on the surface of the partner
protein is reduced when native binding interface is formed. The dashed concentric circles indicate
the region of space where the protein center of mass is allowed to explore in order to be considered
as part of the associated state.

FIGURE 4 Entropy of the free chain is reduced when
forming loops and sequential trains of residues on the part-
ner proteins surface. Small red spheres indicate the contact
volumes.
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The reduction in free chain entropy for end seg-
ments and surface loops is caused by conformational
constraint of having to avoid an obstacle, the “sphere”
occupied by partner protein (4). For the limit of long
chains, the probability of starting a chain at point R
and ending at point R� is given by the Green function
solution [G(R, R�; N)] to the diffusion equation with
absorbing boundary conditions at sphere’s surface:37

� �

�N
�

b2

6
�2�G�R, R�; N� � ��R � R����N� (14)

G�R, R�; N� � 0, �R�� � Rsph (15)

where b is the chain persistence length, taken to be 20
Å as in the earlier works.38 The solution to Eqs. (14)
and (15) is given by39

G�R, R�; N� �
1

�RR�
�

n�0

�

�2n � 1�Pn���

� �
0

� Cn��1/2��uR�Cn��1/2��uR��

Jn��1/2�
2 �uRsph�Yn��1/2�

2 �uRsph�
e��b2/6�u2Nudu (16)

Cn��1/2��z� � Jn��1/2��z�Yn��1/2��uRsph�

� Yn��1/2��z�Jn��1/2��uRsph� (17)

where Pn(�) is a Legendre polynomial with � � cos

, 
 being the angle between R and R�; Jn�(1/ 2)( z)
and Yn�(1/ 2)( z) are spherical Bessel functions. The
Green function, as given by Eq. (16), may be used to
estimate the probability of end segment and surface
loop formation:

Ploop�
; N� �
1

V�
�

R@�

�
R�@��

G�R, R�; N�dRdR� (18)

Pend�N� �
1

V�
�

R@�

�
�R���Rsph

G�R, R�; N�dRdR� (19)

where � and �� refer to the regions of origination and
destination contacts (red spheres in Figure 4) and V�

is the contact volume.
We have surveyed the protein complex database

for the typical values of Rsph and 
 parameters enter-
ing Eqs. (18) and (19). The average protein radius was
found to be 19.3 � 4.5 Å, while the average angle of
loop formation was observed to be 0.13 � 0.02 ra-

dian. By additionally taking into account the ratios of
trains, end segments, and loops of 0.13:0.40:0.47, as
well as the corresponding distributions of end seg-
ments and loops vs chain length (not shown), we have
calculated the relative retention in entropy as a func-
tion of overall chain length (Figure 5a). The range and
the shape of the curve in Figure 5a is not significantly
dependent on the variation of the partner protein’s
radius within the standard deviation of the database as
well as the angular distribution of loop end points. On
the other hand, if the initial estimate of the folding
entropy per residue is lowered from 3 kB to 1.5 kB,
then the ratio of S0 (Qf � 0, Qb � 1) to S0 (Qf � 1,
Qb � 0) changes from 0.77 to 0.62 for a 200-residue
protein, indicating moderate sensitivity to the estimate
of the absolute entropy of folding.

The dependence of the binding/folding entropy as
a function of Qf and Qb is plotted in Figure 5b by
substituting the value for S0 (Qf � 0, Qb � 1) for a
200-residue protein read from Figure 5a into Eq. (11).
As we have alluded earlier, the shape of the entropy
surface is nearly linear.

DATA MINING: EXTRACTING THE GAP
AND THE VARIANCE PARAMETERS

One of the main goals of our current study was to
survey a realistic database of protein–protein com-
plexes for the variability of gaps and variances so we
could approximately estimate the proportion of pro-
teins that are unfolded when isolated. Another intrigu-
ing question is the relative depth of the binding funnel
compared with the folding funnel. To carry out our
study we have chosen, as indicated earlier, a nonre-
dundant database of more then 500 protein–protein
complexes published by Ben-Tal and co-workers.29

To calculate energies of proteins, we have used the
well-known Miyazawa–Jernigan (MJ) pairwise addi-
tive contact potential.40 A few other pairwise contact
potentials have been recently published in the litera-
ture;41–44 however, they are often found to correlate
strongly with the Miyazawa–Jernigan potential.

Although the calculation of the energies of the
native structures as found in the database is rather
simple with the MJ potential, the modeling of the
denaturated state is less straightforward. One option,
albeit very costly, is to carry out a long molecular
dynamics or Monte Carlo simulation of each protein
individually and in complex with its corresponding
partner (1500 such simulations). An alternative ap-
proach, the one that we chose for the current work, is
to shuffle the protein sequence to imitate alternative
conformations. Similar permuting the protein contact

340 Papoian and Wolynes



maps has been employed by Domany and co-workers
to study protein folding.45 Some of the contact maps
introduced by sequence shuffling are presumed to be
nonphysical due to the chain connectivity constraint;
however, there exist in principle algorithms for exam-
ining the viability of the resulting contact maps.46 In
addition, these errors are expected to be less important
since we are not interested in protein chain dynamics
but only in average properties. The sequence shuffling
averages and the real chain dynamics averages are
believed to converge in the high temperature limit.

The following protocol was employed for generat-
ing the partially (Q) denaturated ensemble sequences
(“conformations”). A random residue in contact was
permuted with another randomly chosen residue and
the number of native contacts affected by such move
was recorded. This step was repeated the necessary
number of times until the number of altered contacts
reached Q time the total number of contacts. After
calculating the energy of the resulting sequence con-
formation, the whole procedure was repeated 10000
times for each protein individually as well as for

FIGURE 5 (a) The ratio of retained entropy on forming binding only native contacts to free
entropy as a function of chain length. (b) Entropy as a function of folding and binding order
parameters for a 200-residue protein.
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protein–protein interfaces. The resulting energy vari-
ance per contact as a function of Q is shown in
Figures 6.

We have showed earlier [Eq. (10)] that the folding
and binding variances vary with Q as (1 � Q)(1
� 	Q)�E2, where 	 indicates the degree of hetero-
geneity of native contacts (0 � 	 � 1). When this
formula is fit into Figure 6, the folding native contacts
are found to be as heterogeneous as nonnative con-
tacts (	f  1), while native binding contacts are much
more homogeneous (	b  0).

Our calculations of the energy gap as a function of
Q for folding and binding contacts has revealed an

interesting trend. We partitioned both folding and
binding contacts into nearly equal groups according to
their respective hydrophobicity composition (hydro-
phobicity scale was taken from Ref. 47). Folding
contact curves indicate that the Miyazawa–Jernigan
potential produces nearly indistinguishable energy
gaps for both hydrophilic and hydrophobic composi-
tions (Figure 7). The binding contacts, on the other
hand, present striking dissimilarity—hydrophobic in-
terfaces are funneled while hydrophilic ones are an-
tifunneled (Figure 7). These results suggest a qualita-
tive difference in the forces involved in the two dif-
ferent classes of binding interfaces. Very clearly,

FIGURE 6 The energy variances per contact of the folding and binding contacts as the functions
of similarity measure Q to the native state.

FIGURE 7 The energy gaps per contact of the folding and binding contacts as the functions of
similarity measure Q to the native state. The proteins are partitioned into being either hydrophobic
or hydrophilic.
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specific water-mediated interactions must play an im-
portant role in hydrophilic interfaces. In essence, it
appears evolution has come up with a qualitatively
new strategy for overcoming what would otherwise be
a strong conflict (i.e., frustration) between the require-
ment of folding and binding. Thus we see a new
bioinformatic route to finding a water mediated con-
tact potential that will eliminate the frustration too.48

We have sidestepped so far the issue of the abso-
lute energy scale characteristic to the Miyazawa–
Jernigan potential. Since no conclusive arguments
were provided for the particular value of the Miyazawa–
Jernigan energy scale, we have chosen to infer it from
the folding REM model. When the free energy of the
folded state (Q � 1) for an isolated protein is equated
to the free energy of the denaturated ensemble (Q
� 0) at the folding transition temperature TF, then
Eqs. (20)–(22) result from Eq. (1):

�Ef � �S0TF �
�E2

2kBTF
(20)

�Ef � zX (21)

��E2 � b�zX (22)

where z is the number of contacts per residue, b is
inversely related to the energy gap over the square
root of the variance ratio, and X indicates the yet to be
determined energy scale. When definitions (21)–(22)
are substituted into Eq. (20) and the consequent equa-
tion is solved for X, the following equations relate X
to b:

X � TF

�2zkB � 2�z2kB
2 � 2zS0kBb2

2zb2 (23)

bmax �
�2zkBS0

2S0 (24)

where the maximum value of b, bmax, is given by the
requirement of having a non-negative value under the
square root expression in Eq. (23). The upper graph
on Figure 8 depicts the energy scale X (in units of
kBTF) as a function of b, when substituting the esti-
mate34–36 of 3kB for the entropy per residue (S0) in
the unfolded ensemble as well as 340 K as the average
folding transition temperature into Eq. (20). The cor-
responding dependence of the glass transition temper-
ature of the underlying REM model is shown in the
lower graph of Figure 8. At the maximum value of
0.55 for b the unfolded protein glass transition tem-

perature approaches the folding transition tempera-
ture. It has been argued before that the ratio of TF over
Tg is near 1.6 for natural proteins, which corresponds
to the crossing of dashed lines in Figure 8 (b � 0.5,
X � �2.3kBTF).

Given a certain value for entropy S0, there exist
only a narrow range of b values that satisfy the
folding REM model. Alternative estimates of entropy
may be made if there is an assumption of significant
secondary structure formation in the denaturated
state;27 however, the b range remains rather limited.
For instance, if the entropy is estimated at much lower
0.6 kB, bmax becomes only 1.1, still lower than 3.1 as
directly calculated with the Miyazawa–Jernigan con-
tact potential. Thus, taking into account the apparent
glassiness of the Miyazawa–Jernigan potential, we
have chosen to scale uniformly calculated variances
by certain factors for folding and binding contacts
respectively so to conform to the b � 0.5 requirement
(i.e., TF/Tg � 1.6). Since we are interested in gauging
the parameter space variability among protein–protein
complexes in the databank, the rescaling of binding
and folding variances by appropriate constant factors
is expected not to affect our analysis.

RESULTS AND DISCUSSION

Having determined parameters for Eq. (10), we are
ready to calculate phase diagrams for coupling of
binding and folding for database protein complexes.
Before doing this, however, it is appropriate to esti-
mate the fraction of individual monomers in the da-
tabase that are unfolded in the absence of their partner
proteins. If this fraction is exceedingly low, then the
monomers are completely folded on their own and the
issue of coupling binding with folding becomes a
moot one.

We start our analysis by calculating free energies
of folding for all individual monomers in the database
by Ben-Tal and co-workers (called Protein Complex
Database from this point on). Histograms of the frac-
tions of proteins having a free energy of folding in a
particular window are shown in Figure 9. From the
integration of the solid curve in Figure 9a we infer
that 31% of monomers in the database have larger
than �1 kJ/residue free energy of folding at 300 K
(i.e., these monomers are unfolded at room tempera-
ture). Since it is hard to estimate the absolute accuracy
of the Miyazawa–Jernigan potential as well as the
Random Energy Model used, a comparison of these
results with some additional reference database may
provide further insights.
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Banavar and co-workers have compiled a database
(called Single Protein Database from this point on)
that includes exclusively proteins that were crystal-
lized as monomers.49 If one makes an assumption that
all proteins in that database spontaneously fold at
room temperature, then the calculated database fold-
ing profile (dashed curves in Figure 9) may be used to
calibrate the corresponding Protein Complex Data-
base profile. The comparison of solid and dashed
curves in Figure 9 suggests that indeed a larger frac-
tion of individual monomers are unfolded in the Pro-
tein Complex Database than in the Single Protein
Database. In particular, 16% of proteins in the Single
Protein Database are found to have larger than �1
kJ/residue free energy of folding, thus prompting one

to conclude that at least on the order of 31 � 16
� 15% of monomeric chains in the Protein Complex
Database are unfolded while isolated.

To gain further insight into the nature of possibly
unfolded monomers in the Protein Complex Database,
we have computed (see Table I) the 20 most unstable
monomers in the database. A quick perusal of Table I
reveals that several virus coat proteins and leucine
zipper motif containing proteins enter prominently
into this list. For the latter proteins, it has been shown
that binding and folding are intimately coupled, i.e.,
that many proteins in the leucine zipper family lack an
internal structure when being in the monomeric
form.16,18,20 The structural analysis of chains listed in
Table I indicates that predominantly either these form

FIGURE 8 Upper graph: The energy gap (�E*f � �Ef/zf) of the folding REM model in absolute
energy units kBTF(TF � 340 K) as a function of b � �Ef/��E2 �zf. Lower graph: The glass
transition temperature of the underlying REM model as a function of b.
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long helical chains heavily interacting with other pro-
teins, or they form nonglobular conformations which
“make sense” only within the context of additional
interactions with partner proteins.

An interesting deviation from the abovementioned
trend is the crystal structure of the NH2-terminal
domain of the lymphocyte cell adhesion protein, CD2
dimer (Figure 10). It turns out that the CD2 dimer is
a metastable state that is not recovered when the
protein is unfolded and then refolded.50 Instead, a
more stable monomeric structure emerges that has a
very different fold than each monomer in the CD2
dimer. Although two domains in the CD2 dimer (Fig-
ure 10) resemble the single monomer domain, these
domains are formed not by individual monomer do-

mains but by intercalation of two protein chains (i.e.,
“fold swapping” instead of domain swapping).50

Therefore, it is highly likely that individual monomer
conformations as present in the CD2 dimer (Figure
10) are not viable native states when the other partner
chain is not present, rationalizing the computed large
positive free energy of folding.

From the previous analysis we have concluded that
at least on the order of 15 per cent of monomeric
chains in the Protein Complex Database are unfolded
at room temperature while on their own. For a typical
protein complex containing such a chain we have
computed a representative phase diagram. We have
carried out a similar calculation for the average data-
base parameters as well (see Figure 11 and Table II).

FIGURE 9 (a) A histogram of free energies of folding per residue at T � 300 K for 1024
individual proteins in the Protein Complex Database and 213 proteins in the Single Protein
Database. (b) An integration of the corresponding curves in the upper graph.
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The folding energy gap in case B is destabilized
compared with the average database gap, but still is
well within one standard deviation from the average
(�11.8 kJ � 2.9 kJ/residue). The binding gap, on the
other hand, was set to be stabilized by one standard
deviation from the database average (Table II).

The analysis of the reference phase diagram for the
average database parameters (see Figure 11a) reveals
that the protein largely folds first before proceeding
with binding. When looking at the Qb � 0 projection

in Figure 11a it may seem at first surprising that the
minimum in free energy function occurs at Qf � 0.6
instead of Qf � 1 as for the properly folded chain.
Notice, however, that F(Qf � 1) is lower in free
energy than F(Qf � 0); the shape of the curve for the
intermediate Q values is dictated by a delicate balance
of entropy and variance on one hand and the native
energy gap on the hand. The reason that we obtain a
minimum in free energy for intermediate Q instead of
a maximum (i.e., folding barrier) is probably due to

Table I Twenty Protein Chains from the Protein Complex Database With the Most Unfavorable Individual Free
Energies of Folding (Membrane Proteins 1occ and 1prc Were Excluded from the List)

Protein Chain �Ffolding Short Description

2bpa 3 7.23 Bacteriophage phix174 coat proteins
1una A 7.32 Unassembled virus coat protein dimer
1lta C 7.40 Heat-labile enterotoxin (lt) complex with galactose
1mec 4 7.48 Cardio picornavirus coat protein
1cdc A 7.52 Cd2, N-terminal domain (1–99), truncated form
1tgx B 7.60 Toxin gamma (cardiotoxin)
1mhl A 7.75 Human myeloperoxidase isoform c
1cdc B 7.88 Cd2, N-terminal domain (1–99), truncated form
1bbt 4 7.94 Foot-and-mouth disease virus
1mhl B 8.25 Human myeloperoxidase isoform c
1tvx B 8.45 Neutrophil activating peptide-2 variant form m6l
1tgx A 8.87 Toxin gamma (cardiotoxin)
1fos G 9.24 Two human c-fos : c-jun : dna complexes
2zta B 9.67 Leucine zipper monomer
2zta A 10.26 Leucine zipper monomer
1got G 10.77 gt-alpha/gi-alpha chimera and the gt-beta-gamma subunits
1lya A 11.04 Lysosomal aspartic protease, cathepsin d
1fle I 11.42 Elafin complexed with porcine pancreatic elastase
1tmf 4 12.44 Theiler’s murine encephalomyelitis virus coat protein
1lpb A 13.32 Lipase complexed with colipase

FIGURE 10 The representation of the CD2 dimer crystal structure. Monomers A and B are
drawn in red and blue, respectively.

346 Papoian and Wolynes



the quasilinear approximation for entropy which we
have adopted in this work. Since we explore currently
only thermodynamic aspects of various phase coex-
istence in the Protein Complex Database, the absence
of barriers does not play an important role in our
analysis. If our theory is to be used to investigate the

kinetic aspects of coupling of binding and folding,
then more refined entropy model needs to be devised,
most likely based on polymer physics arguments (a
polymer chain entropy model by Plotkin and Wolynes
may serve as a starting point31). We also note that
nonadditive contributions to the free energy such as
hydrophobic force and sidechain packing may also
give rise to barriers.

As for the proteins that are more flexible while on
their own, the binding and folding coordinates get
coupled more intimately (Figure 11b). Notice that
F(Qf � 1, Qb � 0) vertex is higher in free energy
than F(Qf � 0, Qb � 0), i.e. the protein is expected
to be unfolded while isolated. The native interface
vertex, F(Qf � 0, Qb � 1), is found to be slightly
lower in free energy than the completely unfolded
state F(Qf � 0, Qb � 0). This does not rule out a
possibility of interface contact ordering as a first step
in the binding-folding mechanism. A study of such a
possibility in detail is best left to capillary style ana-
lytical theory, the subject of work in progress.51 Fi-
nally, F(Qf � 1, Qb � 1) is found to be significantly
lower in free energy than the unfolded state, suggest-
ing that an unfolded protein folds when simulta-
neously native binding contacts start forming.

Certain conditions are to be met for this happen,
however. For instance, the relative ratio of binding to
folding contacts (i.e., roughly speaking the interface
surface area to protein volume ratio) must not be too
low. In addition, the binding funnel must be deeper
than the average. Within our simple theory of cou-
pling binding and folding, one may use Eq. (10) in an
appropriately parameterized form to explore the like-
lihood of particular geometrical and energetic param-
eters to induce folding upon binding.

CONCLUSIONS

As ever increasing amount of evidence is being pre-
sented for the considerable role played by highly
flexible proteins and peptides in biological processes,
signaling, and transcription being among prime exam-
ples, rationalizing the functional significance of such
flexibility has become an important objective in cur-
rent biological research. Inspired by the success of the

FIGURE 11 Free energy as a function of folding and
binding order parameters. (A) Average database parameters.
(B) Destabilized folding and stabilized binding parameters.

Table II Various Parameters Used to Compute Phase Diagrams A and B in Figure 11

T � 	f 	b S0 S(0, 1)/S(0, 0) GapFolding GapBinding
�VarFolding

�VarBinding

A 300 K 0.2 1.0 0.0 3 kB 0.75 �11.8 kJ �9.3 kJ 4.3 kJ 3.4 kJ
B 300 K 0.2 1.0 0.0 3 kB 0.75 �10.3 kJ �12.9 kJ 4.3 kJ 3.4 kJ
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energy landscape viewpoint to rationalize the mech-
anism of protein folding, we have extended in this
work that concept to construct a simple quantitative
theory of coupling of folding and binding.

Specifically, the stratum Generalized Random En-
ergy Model as applied to protein folding by Plotkin
and Wolynes has served as a starting point for build-
ing our model. In our model, an unfolded protein
transiently associates with a rigid surface of a folded
partner protein, possibly followed by ordering of na-
tive interface contacts and folding of the protein
chain. We have derived a free energy expression as a
function of folding and binding order parameters Qf

and Qb [Eq. (10)], which are useful in monitoring the
progress of possible phase transitions. A nonadditive
entropy term in the free energy expression tightly
couples binding and folding coordinates. We have
employed a quadratic quasilinear interpolation for
entropy as a function of binding and folding order
parameters, by estimating entropy at four vertexes of
the Qf and Qb domain. Polymer physics ideas have
been used to calculate the reduction in entropy when
the native binding contacts are pinned at the partner
protein’s surface but the rest of the protein is still
unstructured.

The binding and folding energy gaps as well as the
corresponding energy variances entering into the free
energy expression have been determined by statistical
analysis of a large protein complex database compiled
by Ben-Tal and co-workers. Miyazawa–Jernigan con-
tact potential has been used to calculate the energies
for individual protein conformations. The average en-
ergy and the energy variance of the denaturated state
has been modeled by the sequence permutation of the
database proteins. While the protein folding parame-
ters have been derived without much surprise, the
binding energy gaps were found to be strongly mod-
ulated by interface composition. In particular, hydro-
phobic interfaces were determined to be funneled to
nearly the same degree as in the protein folding case,
yet hydrophilic interfaces were found to be antifun-
neled. We have speculated that water-mediated inter-
actions may play a role; the details on the correspond-
ing potential will be published elsewhere.

Since the coupling of binding with folding makes
much sense only when one of the proteins is (partially)
unfolded while on its own, it is desirable to estimate
how common these unstructured proteins are in the
database. Consequently, we have computed the frac-
tion of unfolded proteins being destabilized by at least
1 kJ/residue, which turn out to be 31% in the Protein
Complex Database. Comparing this number with 16%
calculated for a Single Protein Database we have
suggested that at least on the order of 15% of protein

chains in the former database are unfolded (or adopt
very different native conformations) in the absence of
partner protein interactions. Using the parameters
characteristic of these unstructured proteins, we have
calculated free energy as a function of binding and
folding order parameters. The analysis of the latter
phase diagram has suggested that indeed an unfolded
protein may fold when the formation of sufficiently
stabilizing native binding contacts, which are consis-
tent with the folded conformation, is initiated. We
hope that the basic quantitative theory of coupling of
folding and binding developed in the current work
will serve as a useful stepping stone as well as a
reference point for more elaborate models.
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