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The biological processes in elongated organelles of living cells are
often regulated by molecular motor transport. We determined spa-
tial distributions of motors in such organelles, corresponding to a
basic scenario when motors only walk along the substrate, bind,
unbind, and diffuse. We developed a mean-field model, which
quantitatively reproduces elaborate stochastic simulation results
as well as provides a physical interpretation of experimentally ob-
served distributions of Myosin llla in stereocilia and filopodia. The
mean-field model showed that the jamming of the walking motors
is conspicuous, and therefore damps the active motor flux. How-
ever, when the motor distributions are coupled to the delivery
of actin monomers toward the tip, even the concentration bump
of G actin that they create before they jam is enough to speed
up the diffusion to allow for severalfold longer filopodia. We found
that the concentration profile of G actin along the filopodium is
rather nontrivial, containing a narrow minimum near the base fol-
lowed by a broad maximum. For efficient enough actin transport,
this nonmonotonous shape is expected to occur under a broad set
of conditions. We also find that the stationary motor distribution is
universal for the given set of model parameters regardless of the
organelle length, which follows from the form of the kinetic equa-
tions and the boundary conditions.

olecular motor transport in a living cell is one of the most

fascinating processes in cellular biophysics. Molecular mo-
tors play crucial roles in many elongated organelles, such as neu-
ronal axons (1), flagella (2), filopodia (3), stereocilia (4, 5), and
microvilli (4). A naive view of cellular motor transport is that of
motor molecules orderly following each other on the substrate
and carrying cargo, which they unload at a destination point.
However, in reality, motors not only walk, but also diffuse around
the cell, randomly binding and unbinding to their substrate fila-
ments and/or cargo. To a large extent these processes are gov-
erned by molecular noise. To understand how the motors perform
their functions—be it cargo delivery to the growing end of an
organelle or creating stresses in a flagellum, or even in artificial
systems (6, 7)—it is necessary to know their spatial distribution in
these systems.

The spatial distribution of the motors could influence the de-
livery of building material toward the growing end of a dynamic
elongated organelle, such as a filopodium or a stereocilium. In
the absence of motors, the length of such organelle is expected
to be limited by the slow diffusional delivery of the material to the
tip (8). Furthermore, prior computational modeling of simple,
conveyor-belt-like transport of monomeric species by molecular
motors indicated that specially designed cooperative mechanisms
are needed to achieve any appreciable active transport flux (9).
Two main reasons for the transport inefficiency are sequestration
of cargo by motors and diminution of motor speeds due to clog-
ging of the filamentous bundle by walking motors (9). These
“traffic jams” may also be inferred from the corresponding spatial
distributions of motors, as discussed below. Another intriguing
experimental observation is the localization of the myosin motors
at the tips of filopodia (3) and stereocilia (5). All of these findings
provide sufficient motivation to look deeper into the spatial dis-
tributions of motors and their cargo in actin-based protrusions,
and, in particular, to better understand the physical mechanisms
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which control the delivery of the building materials to the protru-
sion tips.

The goal of the current work is to find the stationary distribu-
tions of motors and their respective G-actin cargo inside cellular
protrusions, such as filopodia or stereocilia. We also investigate
the way these distributions ultimately regulate the lengths of the
corresponding protrusions. In stereocilia, for example, fine reg-
ulation of length is important and is clearly coupled to function
(10). One expects the lengths of filopodia to also be controlled by
cell’s mechanochemical machinery, as seen, for example, in very
long filopodia in sea urchin cells (11). Prior calculations showed
that diffusional transport is unlikely to provide sufficient G-actin
flux to produce such long filopodia (8, 9). In our detailed com-
putational models of motor and G-actin transport in filopodia
and stereocilia, the main processes that determine the spatial dis-
tributions of motors are (i) directed walking of bound motors on
the filaments driven by ATP hydrolysis, (if) diffusion of free mo-
tors in the cytosol, and (iif) the chemical exchange between the
bound and free motors. In this work, we have developed an ana-
lytical mean-field theory to obtain the stationary concentrations
of bound and free motors. It turns out that the mean-field equa-
tions for motor profiles are highly nonlinear and cannot be solved
numerically using most common approaches, requiring instead a
special phase portrait analysis to construct the solution. The
resulting motor distributions are in quantitative agreement with
our detailed stochastic simulations of growing filopodia and in
qualitative agreement with experimental data for Myosin Illa
in stereocilia and filopodia (5). Furthermore, because the motor
proteins may carry cargo such as G actins, we also derived the
corresponding mean-field equations for the G-actin stationary
dynamics. Because G actin’s availability at the protrusion tip
determines the corresponding speed of polymerization, the mo-
tor-driven G-actin transport may critically influence and, hence,
regulate the steady-state lengths of filopodia or stereocilia.

Surprisingly, our mean-field equations indicate that there
exists a universal stationary motor profile, which does not depend
on the protrusion length. This universality is robust with respect
to model parameters or even nature of the elongated enclosed
cylindrical environment. We provide a simple explanation for the
observed universality of motor concentration profiles. Further-
more, detailed stochastic simulations show that the G-actin con-
centration profile in filopodium to be nonmonotonic, with a
minimum, followed by a maximum (12). Using our mean-field
analyses, we suggest a physical explanation that gives rise to the
observed nontrivial G-actin distributions. Finally, the stationary
motor and cargo distributions may be kinetically difficult to reach
for longer filopodia or stereocilia, hence, in the end we discuss
the issue of sensitivity to the initial conditions.
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Results and Discussion

This section is organized in two parts: the “motor” part and the
“actin” part. In the motor part, we present three increasingly rea-
listic mean-field models of motor stationary profile along the
tube. By gradually adding complexity we reproduce the results
of the stochastic simulations of growing filopodia with the Gille-
spie algorithm, which is the most comprehensive representation
of the complex system dynamics in our work, and thus serves as a
check for our mean-field model. Because the resulting motor dis-
tribution does not depend on the filopodial length, we use it in
the actin part to find the G-actin flux due to active transport, the
G-actin concentration profile and the stationary filopodial length
set up by the balance of actin fluxes.

Structurally, a filopodium is a bundle of 10-30 actin filaments
enveloped by the cell’s plasma membrane (Fig. 1). Filaments are
growing at the filopodial tip consuming G-actin monomers (13)
delivered from the bulk of the cell by diffusion and possibly motor
transport (9). The filaments are pulled back into the cell bulk by
special mechanisms inside the cell, in addition, the barbed ends at
the tip are pushed by membrane elastic resistance, resulting in a
gradual motion of the filaments backwards known as retrograde
flow (14). We do not include other regulatory proteins or filament
elasticity into the baseline scenario for motor distribution and
filopodial growth.

Motor Distributions. In the motor part of the problem, we consider
a cylindrical tube with two types of motors—free and bound—
that are subject to two different mechanisms of transport—diffu-
sional and active—respectively. The problem is, therefore, one-
dimensional, and we introduce concentrations of free and bound
motors, ¢(z) and ¢, (z), and write the continuity equations (15)

6cb ()Jb
7*5)’

ocy dJ
a—tf+a—zf = kottCp — konCp = —<

(1]
where J¢(z) and J,(z) are forward fluxes for free and bound mo-
tors, respectively, and k. is the unbinding rate of a motor from a
site on a filament. For the rate constant of binding between a
motor molecule and an F-actin monomer unit, we use the diffu-
sion-limited rate constant, k& = 10 pM~"'s~!, which translates
into k,, = kdlc, rate for a motor to bind to any monomer unit,
¢, being the concentration of F-actin monomer units, which are
the binding sites, inside the filopodium. To calculate ¢, we count
F-actin monomer units in the filopodial volume one-monomer-
unit thick, yielding ¢, = N/S§68, where N is the number of fila-
ments, § is the monomer half-size, and § is the filopodial
cross-section. Fick’s law defines J¢(z) = —Dd.c;. We assume
there are plenty of motors in the cell bulk, which sets a fixed
¢/(0) as a boundary condition (BC) at the filopodial base. We
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Fig. 1. A representation of the filopodial model is shown with kinetics
scheme of chemical reactions. A filopodium is a cylindrical tube with a bundle
of parallel actin filaments inside enveloped by cell’s membrane. The motors
can walk on filaments (with speed v determined by forward and backward
stepping rates) or diffuse in the solution (with diffusion constant of 5 um?/s).
They can bind and unbind to the filaments (with rates k., and k) and, when
on filaments, load, and unload G actin (with rates k; and k). A loaded motor
can detach from the filament simultaneously releasing G actin. Thus, there is
no G actin bound to motors in the solution, fulfilling the nonsequestrating
regime condition.
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can also assume that there is detailed balance between free
and bound motors in the cell bulk and, therefore, at the base,
and obtain the third BC, ko,cp(0) = kogc;,(0). Interestingly, an
alternative BC may be adopted without relying on this assump-
tion in case when filaments cease to exist outside of the tube and
when comparison with discrete stochastic simulation results is not
needed. This BC, which turns out to be ¢, (0) = 0, is elaborated in
the ST Text, where it is also shown that the choice between the two
alternative BCs leads to almost identical results. For the station-
ary solution of Eq. 1, the total motor flux through a cross-section,
corresponding to the integral, J; + J;, = const, turns out to be
zero, Jy + J, = 0, because of the reflecting BC at the tip. Inter-
estingly, this is the only time the filopodial tip enters the solution
for the motors, and it does not introduce the filopodial length as a
parameter. Consequently, the stationary motor concentration
profiles do not depend on the length. Such universality of motor
profile is robust, because it will be also present in other elongated
organelles and enclosed cylindrical environments, as long as the
system is governed by diffusion and directed random walk, yield-
ing equations of the form Eq. 1 with these BCs. This result is
surprising and important.

Phantom Motors Model Failure. The simplest expression for the
bound motor flux is J, = (v —v,)c;,, Where v is average motor
speed generated by ATP hydrolysis steps, and v, is the retrograde
flow speed. Now we have a closed system of equations for the
concentrations with stationary solution defined by Dc/'(z) =
—konc(z) + kogtcp(z) = (v —v,)c;(z). This linear set of homoge-
nous ordinary differential equations (ODEs) (phantom motors
model, or PMM) has been solved analytically (but with different
BCs) to find a motor concentration profile in a stereocilium (15).
Our BCs yield an exponential growth of both free and bound
motor concentrations toward the tip of a filopodium (dashed
lines on Fig. 2). The PMM solution strongly disagrees with the
stochastic simulations of the same system. The reason for the fail-
ure is that, in the PMM, motors do not interact with each other
and can bind onto filaments unlimitedly, regardless of the finite
number of binding sites. In reality, ¢, (z) is capped by the concen-
tration of binding sites, which in our simulations equals F-actin
monomer unit concentration c;.

Finite Filament Capacity (FFC). To account for the saturation of bind-
ing sites, one has to make ko, = k& (cy —cp) = kO (1 — ¢y /cy)
dependent on the number of available binding sites (16). The
mean-field equations become nonlinear and can be solved nu-
merically. The results are in a better agreement with the stochas-
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Fig. 2. Comparison of the mean-field analytical models with the stochastic
simulation results. The dashed line is the phantom motors model, the solid
line is the FFC model, where limited number of binding sites on the filaments
is taken into account. Circles are simulation results for ¢, and squares for c;.
Inset zooms into low concentration region to show curves for cy.
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tic simulations (solid lines in Fig. 2). Still, the discrepancies are
rather notable, especially for the concentration of free motors
(Fig. 2, Inset).

Jammed Motors. To improve the accuracy of the mean-field model,
one has to take “clogging” into account. The binding site occu-
pancy prevents a motor from stepping on that site, which leads to
the slowdown of the active transport, or “traffic jamming.” To ob-
tain the new equations in a comparatively rigorous fashion, we
start with a picture of 1D lattice with biased random walk obeying
the Fermi-Dirac statistics (i.e., a motor cannot step to an occu-
pied lattice site) (16). The dynamics of the system (assuming
no correlations between lattice site occupancies) are described
by an equation similar to the master equation, b, = k_b,_,
(l—b)+k byi(1=by) =k (1 =by,i1)by =k (1 —b,_y)b,—
kottby, + kSh(1 = by)cy(z,), where b,, is the probability that the nth
site is occupied, z, is the spatial locatlon of the nth site, and
k_, k. are the rates for the forward and the backward steps.
The terms for the fluxes resulting from motor steps are obtained
by the product of probability that the source site is occupied and
probability that the destination site is free multiplied by the step
rate. Although the length of motor step is equal to 12 monomers,
and there are several filaments inside a filopodium, these subtle-
ties do not influence the continuum limit [c, (z) = ¢,b,]. The con-
tinuum version of the equation coincides with Eq. 1, where
Jp =vep(1 = ¢p/cy), wherev = (k_, — k_)l, and [ is motor step
size. The difference of this expression from the FFC model can be
perceived as the modification of the motor speed by the probabil-
ity that the next site is free. After including the retrograde flow
into the final expression for the bound motor flux (J, =
cpv(1 = ¢cp/cs) —v,]), we get the equations for the jammed motor
model (JMM):

{ ~Dc;' offCh — koncf( - Cb/cs)’
[Cb(v(l _Cb/cs) r)] _koncf(l _Cb/cs) -

The JMM equations considerably strain the mean-field ap-
proach, for instance, they have regions of instability. They cannot
be solved with finite differences methods (at least, in a physically
meaningful way), but for biologically reasonable parameter va-
lues, the mean-field treatment can be saved through the phase
portrait analysis of the JMM equations. After using the integral
J¢ + Jp, with the BC, we can rewrite the JMM equations as a set of
two first-order ODEs and investigate it as an evolving dynamical
system (with z treated as “time”):

(2]

KofgCp-

_koffcb + kon (Cb)cf
v—v,=2vep/cs

[3]

-y, /
Cp, C, =
D b

We see that ¢/ goes to infinity on the singular line
¢; = (1 —v,/v)/2c, except at the point (P) where the numerator
in Eq. 3 is also zero. P is therefore the only point where the
trajectory can cross the singular line with a physically meaningful
result. Still, ¢, is undefined in P and will take an arbitrary value
when calculated numerically. However, we notice that the system
has a nontrivial saddle fixed point Q, when cf(Q) = kott/
k% (v/v, = 1)c, and ¢,(Q) = (1 —v,/v)c,. The point Q corre-
sponds to almost fully saturated filaments (allowing just enough
directed motor flux, so that it is fully compensated by retrograde
flow) and free motors in chemical equilibrium with the filaments
—a situation one would expect far from the filopodial base. This
situation is actually observed in the FFC model and the simula-
tions. Thus, as time approaches infinity, a physically meaningful
solution should be approaching the point Q along its stable ei-
genvector, similar to the FFC solution. Shooting backward in
time from Q along its stable manifold, we recover the solution
down to the singular line of ¢, = ¢;. To finish the construction
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of the solution for the JMM we integrate Eq. 3 up to the singular
line and combine the two parts, thus avoiding the need to cross
the singular line.

The solutions for various sets of parameters—K, c¢(0), and
v—are given in Fig. 3. The JMM gives a very good approximation
to the stochastic simulations. We confirmed these stationary
solutions, by numerical integration of the time-dependent JMM
partial differential equations.

Furthermore, a high-quality closed-form solution to Eq. 2 can
be obtained by taking advantage of only weak violation of the
detailed balance within any local segment of the tube, and hence,
derive a new approximate relation between ¢y and ¢, reducing
the model to a single ODE that can be solved analytically (see

SI Text for more details):
D (14y)
e el () Jr). e
onVr
:koncf(o)/

where [ = koncf/koffcsa y=v/v,—1, and f, :f(o)
kotecs- The solution is given in Fig. 3 as dashed lines and agrees
with the full solution very well.

Our results are in qualitative agreement with experiments on
delivering of espinl by Myosin IIIa (M3a) in stereocilia and filo-
podia, which show gradually growing and saturating M3a concen-
tration profiles, called “drop-like” by the authors due to the
characteristic form of their appearance in fluorescence images
(5). Similar fluorescence shapes would be expected from the
curves in Fig. 3. In particular, the M3a profiles in longer stereo-
cilia have longer saturated regions (bright appearance), which
can be explained by our proposed universality of the JMM pro-
files with respect to organelle length. Indeed, in a longer orga-
nelle, a larger part of the same concentration profile would be
above the visibility threshold, thus showing up as a larger satu-
rated region.

In our model, traffic jams build up rather close to the organelle
base (Fig. 3), which compromises the transport role played by
motors if it requires them to be walking far from the base in large
numbers. A cell might employ special mechanisms to prevent
early jamming, for instance, it could immobilize motors at the
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Fig. 3. Motor concentration profiles inside a filopodium are shown accord-
ing to stochastic simulations and jammed motors model for various para-
meter sets (motor affinity to filaments, motor speed, motor concentration).
For each set of parameters, the simulations points continue up to the filopo-
dial length from the corresponding simulation. Theoretical curves were com-
puted for all lengths. Inset zooms into low concentration region to show
curves for ¢;. Circles correspond to simulations, solid lines to the numerical
solution of the mean-field theory, and dashed lines to analytical solution
of the mean-field theory using the approximation of weakly violated de-
tailed balance.
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organelle tip, effectively removing them from the picture, while
they would still show in fluorescence. Localization at the tips is
sometimes observed in fluorescence experiments (3, 17). Whirlin,
a scaffolding protein, would be one possible candidate for a mo-
tor immobilizer. Whirlin was suggested to form complexes with
several Eps8 and myosins (17), so if these complexes are an-
chored at the tip, they could act as myosin sink and prevent
jamming.

Apart from jamming, the efficiency of transport may be also
decreased by sequestration of the delivered material by motors.
Thus, when very fast or very long protrusion is required, alterna-
tive processes may be needed. For example, in Drosophila S2
cells, preformed microtubules are pushed from the center of
the cell by kinesins and protrude the membrane, forming long
processes (18). In axons, cytoskeletal proteins have to be synthe-
sized locally in the growth cone (1, 19), possibly because the need
for their consumption is exceeding the active transport deliv-
ery limit.

Mathematically, the motor problem is a good example of the
need for preliminary qualitative knowledge of the behavior of the
system. Solving the FFC model allowed us to construct the JMM
solutions, and the simulations provided a consistent check for the
mean-field model, as well as motivation to challenge the PM
model, which turned out to be inapplicable at greater protrusion
lengths.

To put the problem in a larger context, it is well known that
stochastic chemical kinetics can be directly mapped onto quan-
tum field theory (20, 21). In this language, the JMM corresponds
to coupled bosonic (diffusing motors) and fermionic (walking
motors) fields. Earlier works on the problem of motors in a tube
have used bosonic-bosonic (PMM) (15) or fermionic—fermionic
(22) theories, which in a mean-field approximation yield equa-
tions similar to Eq. 2. Our work solves the bosonic—fermionic
model, yielding a solution rather different from these prior solu-
tions, and one that matches most closely the physical reality of
active transport in protrusions such as filopodia or stereocilia.

Because the stationary motor distribution does not depend on
the filopodial length, it can be used as a constant external field to
find out how the protrusion length is modified by the active trans-
port, which is discussed next.

Transport of Actin. To model the active transport of G actin, we
allow, in addition to the scheme described above, for motors
to load and unload G-actin molecules. We consider the case when
motors can only load G actin when they are bound to the
filaments, and not when they are free in cytosol. In this way,
the problem of sequestration of G actin by motors (9) mentioned
above is avoided. The requirement is not completely artificial, as
similar mechanisms are known in other motor systems. For in-
stance, kinesin tail can interact with its head domain in an auto-
inhibitory way (23), possibly preventing important interactions
between the head and the microtubule (24). One possible reason
for that is saving ATP, but it could also serve to prevent seques-
tration of the cargo by freely floating motors.

We will now find the filopodial stationary length along with
actin concentration profiles. The length is set by the balance
of actin fluxes, which should hold in stationary case just like
the balance of motor fluxes discussed above (8). There are three
transport fluxes of actin: diffusional flux J, = —D0d,a [where a(z)
is the concentration of freely diffusing actin], retrograde flow flux
J, =—Nv,/§6 = —v,c, and active transport flux J 7. The sta-
tionary condition is Jp + J, +J 47 = 0. In addition, at the tip,
polymerization converts G actin to F actin, directing the sum
of all G-actin transport fluxes (Jp + J 47) to the retrograde flow.
The polymerization fluxis Jp = N(kay, —k™)/S, where k* are
the (de)polymerization rates, and in the stationary case
Jp =—J, =Jp + J 7. In other words, the growth (or retraction)
stops, when the concentration of G actin at the tip a;;, provides

10852 | www.pnas.org/cgi/doi/10.1073/pnas.1200160109

polymerization flux Jp equal to the retrograde flow flux J, (8).
This condition yields

agp = (v,/8+ k™) /KT [5]

We proceed to finding the stationary length by finding the whole
profile a(z) and seeing where a(z) reaches ay,. G actin can dif-
fuse, load to the motors-on-filaments, and unload, and also be
carried forward by them in directed fashion. As discussed in
the first section, the stationary motor concentration profile is
independent of actin cargo or diffusing G actin, or of the filopo-
dial length. Therefore, from the actin dynamics viewpoint, ¢, (z) is
just an external stationary field, not a variable. Thus, after taking
into account binding site saturation and traffic jamming, the
equations for actin yield a set very similar to Eq. 2:
—Da”+k1a(cb —A) _kulA =0, [6]
[(v(1 =cp/c5) =v)A]" = ka(cp — A) + kyA =0,

where A(z) is the concentration of actin carried by motors. The
first equation describes the balance of G actin in solution. In ad-
dition to diffusion, the G actin in cytosol can be loaded on the
motors-on-filaments with the loading rate k; and unloaded with
the rate k. The factor (¢, — A) is the concentration of unoccu-
pied motors-on-filaments. The term in square brackets in the sec-
ond equation, which describes the fluxes of G actin bound to the
motors, is equal to active transport flux J 47 (and differs from J,
in the “motor problem” only by having the factor A4 instead of ¢,).
The BCs are also similar to those for motors: (i) At the filopodial
base, the concentration of G actin is equal to the bulk concentra-
tion in the cell, a(0); (i7) assuming detailed balance of the loading
reaction in the bulk and at the base, A(0) = k;a(0)c,(0)/
[kja(0) + k] (see SI Text for additional discussion); and (iif) like
before, we have a conservation law rather than a boundary con-
dition. Finding an integral by summing Eq. 6, we obtain Jp+
J 47 = const = —J, = —v,c,, (after applying the actin balance flux
condition above to find the constant).

Knowing the motors-on-filaments concentration c,(z), one is
able to solve Eq. 6 numerically. Here we use the solution of Eq. 2,
but ¢, (z) could in principle be estimated from fluorescence ex-
periments (3, 5, 17) or detailed stochastic computer simulations.
Because all the BCs for Eq. 6 are related to the filopodial base
(z = 0), the solution can be constructed starting from zero in a
straightforward process. We first compute the motor profile dis-
tribution ¢, (z) from Eq. 2, followed by the G-actin profile distri-
bution, a(z), from Eq. 6, and finally we determine the steady-state
filopodial length by finding the position z;;,, where a(z) intersects
with a horizontal line drawn at the height a;, equal to 2.3 uM for
the retrograde flow rate of v, = 70 nm/s.

From Eq. 6, we predict that the G-actin distribution in a filo-
podium growing with the help of nonsequestering molecular mo-
tor transport is nonmonotonic. This result (also supported by
stochastic simulations) is far from obvious, but it can be rationa-
lized through the following arguments. First, assuming J 47 is
small at the filopodial base, which is often the case, the slope
of a(z) has to be negative there, because of the conservation
law, which requires balancing of Jp + J 47 and J, at the base.
On the other hand, one would expect motors to pump the con-
centration in the tube, so that it grows as a function of distance
from the base, as does ¢, (z) itself. Thus, empty motors “vacuum
up” the diffusing G actin near the base, creating the negative
slope of a(z) and transporting these bound molecules farther into
the tube. Hence, at some point, a(z) starts to increase, so the
slope changes to positive, thus creating a minimum (the minimum
may nearly disappear at higher J 47 values at the base, as seen for
a red curve in Fig. 4). However, at the same time, the traffic jam
builds up, decreasing the efficiency of G actin pumping forward,
so after reaching a maximum a(z) starts to drop once again
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Fig. 4. G-actin concentration profiles for different parameter values are
shown. Circles represent the results of stochastic simulations and lines are
the solutions of Eq. 6 for a(z). All the profiles end when the concentration
drops below ay, (Eq. 5), which is about 2.3 uM for our parameter values.

(Fig. 4). Alternatively, the slope of a(z) at the tip has to be ne-
gative as well: a(z) > ay, everywhere inside the filopodium, or it
would not be able to grow past the point where a(z) < ay,. With
the requirement of the negative slope both at the base and the tip,
it could either be a monotonic decrease, or at least one minimum
followed by one maximum. In the absence (or inefficiency) of
active transport, we observe the former situation, a nearly linear
decrease (SI Text). Fig. 5 shows the magnitude of active G-actin
flux J 47 which starts to drop sharply after the region of jamming
build up. Interestingly, in some cases, J 47 may be higher at the tip
when the unbinding rate, k., is increased, which may seem coun-
terintuitive because motors in this case are less processive and
spend less time on filaments. On the other hand, the jamming
starts further in the tube, increasing transport efficiency in these
specific cases.

On the left-hand side of the broad maximum in Fig. 4, the J is
negative and works against the positive J 47 (Fig. 5). After the
motor jam builds up, J 47 decreases, so Jp has to increase cor-
respondingly because of the flux balance. Thus the burden of
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Fig. 5. Active transport fluxes for different parameter values are calculated

as Jar(z) = (v[1 = cp(2)/cs] — v, )A(2). Symbols correspond to A(z) and c,(z)
taken from the results of stochastic simulations, and lines are plotted by tak-
ing ¢,(z) and A(z) from the solutions of Egs. 2 and 6. Active transport flux
decreases after the traffic jam is formed. The retrograde flow flux J, of 415
molecules per second determines the flux of G-actin monomers, which need
to be delivered to the tip at steady state. Dashed line shows the diffusional
forward flux of G actin for k, =30 s~", ko = 10 s~', [M] = 0.3 uM (corre-
sponding to the black curve on Fig. 4). Active flux is still significant even
far from the start of the jam, however, starts to vanish near the tip.
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actin delivery transfers from motors to diffusion, so at the tip J 47
can be almost negligible compared to Jp (for one of the para-
meter sets in Fig. 5, it is 53 vs. 360 molecules per second). Inter-
estingly, J 47 is still considerable far from its maximum, which is
very close to the base due to the quick jam development. One of
the factors sustaining J 47 is the high value of unjammed motors
speed, on the order of one micron per second, which can still de-
liver noticeable flux even when diminished by an order of mag-
nitude due to jamming. However, it turns out that it is still mainly
the diffusion that delivers monomers to the tips of long filopodia
for the most of their lengths. The role of active transport can be
formulated as that of increasing the concentration gradient for
diffusion through locally increasing the concentration near the
base, or in the middle of the filopodial tube. From the point
of view of actin flux balance, the latter is the same as having a
higher “effective” bulk concentration of G actin in a filopodium
with no active transport.

The mean-field model for actin is either in quantitative or
semiquantitative agreement with the stochastic simulations, de-
pending on model parameters (Figs. 4-6). In terms of stationary
length, and positions and heights of G-actin concentration peaks,
the discrepancy between the analytical mean-field solution (solid
lines) and stochastic simulations (circles) is less than 20-25%.
The shapes of the corresponding curves are almost identical,
and the discrepancy amounts to scaling the mean-field curves
down in both axes. Interestingly, the agreement between mean-
field results and stochastic simulations is very accurate for bound
species, ¢, (z) and A(z), as seen in Fig. 6. Hence, barely noticeable
discrepancies for bound species profiles amplify into noticeably
larger errors for the cytosolic actin concentration profiles, which
in turn determines the filopodial length. This amplification may
be understood as a result of pumping current created by motors,
which is highly nonlinear. The trend of seeing better agreement
for shorter filopodia supports this point of view. Yet another way
to formulate the quantitative correspondence between mean-
field and simulation results as simple scaling of axes is that noise
and fluctuations renormalize the parameters in the mean-field
theory (8). In general, if molecular fluctuations are very strong
at small protein copy numbers and couple to nonlinear chemical
kinetics, the resulting dynamical behaviors might be rather differ-
ent from the corresponding mean-field predictions (25, 26). In
the context of active transport in filopodia, the fluctuations
are moderate within certain regime of model parameters, how-
ever, the mean-field picture is destroyed when fluctuations
become too large in case of other model parameters, as we have
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Fig.6. Concentration profiles for actin-on-the-motors A(z) and motors ¢, (z)
are shown for ky; =30 s7', kg = 10 s~', [M] = 0.3 pM (corresponding to the
black curve on Fig. 4) from analytical solution. The concentration of F-actin
binding sites ¢, = N/S5 = 558 pM caps ¢, (z), while A(z) is in turn capped by
¢y (2). Symbols correspond to A(z) and ¢, (z) taken from the results of stochas-
tic simulations, and lines are plotted by taking c,(z) and A(z) from the solu-
tions of Egs. 2 and 6.
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seen in the motors part of the problem. In simulations, reaching
the steady-state length predicted by the mean-field theory may be
a very slow process, taking up to 15 min, sometimes showing more
than one distinct stationary or quasi-stationary state (12). Even
within the mean-field theory, two different steady states for
the same set of parameters are possible (when the first minimum
in G-actin profile is lower than ap; Eq. 5). In such cases, the
filopodial evolution (and length in particular) can be largely de-
fined by the initial conditions for its growth or retraction. Paral-
leling the stochastic dynamics of a filopodium to navigating an
energy landscape (27), one may suggest that this energy land-
scape is somewhat rugged, similar to that of spin-glasses or het-
eropolymers, with many kinetic traps appearing as quasi-
stationary states.

Conclusion

We have constructed a comprehensive set of mean-field models
to describe a possible mechanism of G-actin active transport in-
side filopodium or stereocilia. The predictions of these equations
quantitatively reproduce most of detailed stochastic simulation
results and are consistent with a number of experiments on
measuring motor fluorescence in actin-based protrusions. The
concentration profiles of molecular motors are universal, inde-
pendent of the protrusion length. This universality is a fundamen-
tal property of the problem of motors in a tube, independent of
parameters or even the actin-bundle nature of the tubes consid-
ered in this work.

According to our model, motors form a traffic jam relatively
close to the base of the filopodial tube, which greatly slows down
their walking further into the tube. However, local pumping of
G actin up to the jamming region can create enough G-actin con-
centration gradient for diffusion to be able to sustain filopodia
several times longer than in the absence of active transport. The
pumping is manifested as a nontrivial concentration profile of dif-
fusing G actin, with a minimum followed by a maximum. Hence,
despite jamming, motor transport can be quite efficient in produ-
cing much longer protrusions. Interestingly, multiple steady-state
solutions seem possible under certain combinations of rate con-
stants and species concentrations, which is an issue that should
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be explored further both experimentally and theoretically. We
also observed that kinetic barriers may slow down the approach
to the steady state for longer filopodia and stereocilia, hence, fi-
nite-time observations may sensitively depend on the initial con-
ditions and could explain some of the variability seen among
neighboring protrusions of the same cell.

Materials and Methods

Model Parameters. \We employ the following computational setup (Fig. 1).
There are N = 16 actin filaments in the cylindrical filopodial tube with radius
R =75 nm) (28). There are two protofilaments in each filament, so we use
half a monomer size 5§ = 2.7 nm. These values yield a concentration of F-actin
monomers in a filopodium ¢; = N/zR%5 ~ 560 pM. G actin is diffusing along
the filopodium (D =5 pm?/s) (29) while its concentration at the filopodial
base is maintained by the cell at a constant bulk level a(0) = 10 pM (9, 30,
31). At the tip, G-actin monomers can react with the N barbed ends with
the rate k* = 11.6 pM~'s~! and depolymerize with rate k= = 1.4 s=' (31).
Retrograde flow moves the filaments backward with a constant speed
v, =70 nm/s (14). Myosin motors also diffuse along the filopodium
(D =5 um?/s), but in addition they can bind to a filament with the rate
kon (for all the binding and on-rates we use the diffusion-limited value of
10 uM~"'s~"), unbind with the rate kq¢ (10-100 s—') and perform forward
and back steps on filaments with the rates k., =50s~" and k_ =5s7"'. In
the continuous analytical model, these rates translate into v = (k_, —k_)/i ~
1,400 nm/s (with motor step size I, = 32.4 nm). If a motor is bound to a fila-
ment, it can also load actin with the rate k; = 10 pM~" s~" and unload it with
the rate k. (10-30 s~'). To prevent sequestration, when a loaded motor
unbinds from a filament, it simultaneously releases its G-actin cargo. Motors
cannot step on or bind to an F-actin monomer unit occupied by another
motor. Like with G actin, the unbound motors concentration at the base
¢£(0) was kept constant at the bulk value (0.1—1 pM).

Stochastic Simulations. Polymerization, depolymerization, motor stepping,
binding and unbinding, actin loading and unloading, and diffusion are trea-
ted like chemical reactions with set rates, based on the algorithms elaborated
in our prior works (8, 9, 12).
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