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ABSTRACT: The associative memory, water mediated, structure
and energy model (AWSEM) is a coarse-grained protein force field.
AWSEM contains physically motivated terms, such as hydrogen
bonding, as well as a bioinformatically based local structure biasing
term, which efficiently takes into account many-body effects that are
modulated by the local sequence. When combined with appropriate
local or global alignments to choose memories, AWSEM can be used
to perform de novo protein structure prediction. Herein we present
structure prediction results for a particular choice of local sequence
alignment method based on short residue sequences called
fragments. We demonstrate the model’s structure prediction capabilities for three levels of global homology between the
target sequence and those proteins used for local structure biasing, all of which assume that the structure of the target sequence is
not known. When there are no homologues in the database of structures used for local structure biasing, AWSEM calculations
produce structural predictions that are somewhat improved compared with prior works using related approaches. The inclusion
of a small number of structures from homologous sequences improves structure prediction only marginally, but when the
fragment search is restricted to only homologous sequences, AWSEM can perform high resolution structure prediction and can
be used for kinetics and dynamics studies.

■ INTRODUCTION
Over the last decades, what has been called “the protein folding
problem”1 has evolved dramatically. Throughout this period,
both the practical and philosophical aspects of the problem
have changed in the minds of scientists. Practical people want
to find the structure of a protein from its sequence alone by
whatever means necessary. Those of a more philosophical bent
have been intrigued by the puzzle presented by a chain
molecule organizing itself to a small family of structures in the
face of incessant thermal buffeting, seemingly violating our
notions of entropy. How this happens is probed in the
laboratory through studies of folding kinetics, often by mutating
various residues in the protein,2 to explore their contribution to
folding.
The hope has always been that conceptually understanding

the physical process of folding will help in the practical task of
structure prediction. Like the entwined histories of thermody-
namics and the steam engine, the interaction of the practical
and theoretical sides of the folding problem has been mutually
supportive. Interestingly, many of the key physical forces
driving the folding process, in particular the hydrophobic
interactions and the necessity for backbone hydrogen bonds,

were predicted by Pauling and Kauzmann before crystal
structure determination of proteins.3,4 It has turned out that
many other more subtle interactions also contribute to precise
sculpting of folding landscapes, with unique native basins that
are kinetically accessible and these have been learned in the
process of improving structure prediction algorithms. Among
these subtle forces, it has been shown that water-mediated
interactions between hydrophilic residues are used as weak but
specific forces that complement hydrophobic interactions and
help guide early folding events.5−8 In addition, water-mediated
interactions may allow larger proteins to partition into foldons,
stabilizing intraprotein hydrophilic interfaces. We see there has
been a decades long quest to identify key interactions
stabilizing the native basins of globular proteins, which, in
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turn, has led to subsequent improvements in the quality of
structure prediction efforts.
The most powerful tool for practically predicting tertiary

structure, however, remains homology: structure evolves more
slowly than sequence, so structures can be predicted if closely
related molecules have already had their structures determined.
This conservation of structure seems to be a consequence of
the funneled nature of real protein energy landscapes. Thus,
while prediction by analogy does not explicitly use an
understanding of the physical folding process, the funneled
nature of the folding landscape is crucial. The funnel landscape
ultimately is also responsible for the cooperativity of folding
and is thus an essential feature of models of the folding process
in the laboratory.9,10 Energy landscape theory allows the
funneled nature of a landscape to be quantified.11−13 Using this
quantification, energy landscape theory has led to a way of
learning the forms and parameters of energy functions for
modeling folding kinetics and structure prediction by studying
the database of existing structures. The main idea of the
learning algorithm is that the folding landscape should be as
strongly funneled as possible, while still remaining transferable
from one sequence to another. Over the years, this approach
has led to a family of energy functions whose simulated
dynamics mimics many observed features of laboratory folding
and that also allow low resolution prediction of protein tertiary
structure from sequence, even when no homology information
is known (“de novo prediction”). In this paper, we report on a
further development of this family of methods that uses local
sequence similarity to encode structure short-range in sequence
while a coarse-grained water mediated interaction is used to
determine tertiary structural themes.
The associative memory, water mediated, structure and

energy model (AWSEM) force field, presented in this work, is a
direct successor in a series of protein structure prediction
models14−20 called early on the associative memory Hamil-
tonian (AMH) model because of its similarity to neural
network models21 and in later works was called the AMW
model, to emphasize the addition of water-mediated
interactions.6−8 The key idea behind AMH is to simultaneously
sculpt deep folding funnels for multiple unrelated proteins,
using the same set of parameters, which then produces a
transferrable protein folding force field. The physical principle
from landscape theory that drives the optimization learning
algorithm in AMH/AMW is the maximization of the ratio of
folding temperature over glass transition temperature for each
training protein. While this key principle has remained steady
over two decades, the underlying force field components have
substantially grown in scope. Specifically, while the earlier
versions of AMH had to rely almost entirely on the knowledge-
based part of the Hamiltonian derived from global homology to
memory proteins, the later iterations emphasized more and
more the role of physical interactions, such as hydrogen bonds
and water-mediated interactions which have a novel character
going beyond Kauzmann’s hydrophobicity. The AWSEM force
field of the current work continues this tradition, and is actually
dominated by the physical interactions. The only explicitly
knowledge-based component of the AWSEM Hamiltonian is a
term which biases local sequences that are of length nine
residues or shorter, toward conformations found in proteins
containing analogous fragment sequences. A related local
fragment based approach has been successfully used by Baker
and co-workers in a variety of works to assemble candidate
conformations for protein structure prediction.22

Even for this knowledge-based component based on peptide
fragments, there exists a sound physical justification based on
modern ideas of coarse-graining.23−25 In the three bead per
residue structural model adopted in AWSEM, the vast number
of original atomic degrees of freedom have been integrated out,
both from the solvent and the protein. Hence, a priori, one
expects this integration to result in a coarse-grained force field
that contains a large number of complicated many-body terms,
especially at the local in sequence level, where detailed
interactions of specific neighboring side chains may favor one
local conformation over another. In terms of model building,
the choice here is to either determine explicitly what these
many-body potentials are26 and determine a huge number of
associated parameters or, alternatively, use similarity to local
sequences in other proteins to infer the same many-body
interactions using a knowledge-based approach. The latter is
the strategy adopted in AWSEM, and it seems to be a useful
compromise that one needs to make for coarse-grained protein
structure prediction in the foreseeable future.
The idea that a significant amount of the funneling of the

folding landscape lies in the short range in sequence details is
consistent with our knowledge of the thermodynamics of
peptide fragments. Saven and Wolynes27 showed that local
structural signals which only weakly bias the helical state of
peptides become much more effective when the protein chain
has collapsed and, indeed, if they are not in conflict with tertiary
structure should provide more than a third of the native
structure seeking energy gap in the folding funnel. In this
regard, local fragment energy terms are also appropriate as a
realistic first step in describing laboratory kinetics faithfully.
While the efficacy of combining fragment energy terms with

water mediated interactions has already been established,28 the
specific combination of elements in the current combination of
physical potentials, such as the α-helical hydrogen bonding
potential along with the locally determined fragment memory
potential, has not been studied before. In addition, as a
significant technological improvement in its computer
implementation, AWSEM has been written from ground up
as new software in C++, leveraging the popular LAMMPS
molecular dynamics package.29 This flexible implementation, in
turn, provides opportunities for applying AWSEM to modeling
situations that were difficult to program because of the
limitations of the previous FORTRAN codes for AMH and
AMW. In particular, assembly of multiprotein complexes,
interactions of proteins with coarse-grained models of DNA,30

mechanical pulling,31 and many other studies now become
straightforward. The AWSEM MD package is available for
download as an open source software (http://code.google.
com/p/awsemmd/).
In this work, we have benchmarked the AWSEM code by

predicting folding of 13 α-helical proteins which we have
studied before with earlier versions of the AMW.6 Not
surprisingly, the quality of predictions depends on the fraction
of global homologues that are similar to the particular target
protein in the fragment memory database. To quantitatively
explore this issue, we prepared three database versions that
mimic practical situations one encounters in real life structural
prediction: (1) homologues excluded, (2) homologues allowed,
and (3) homologue-only. The homologues excluded version is
tantamount to the situation one faces in predicting a new fold, a
fold currently unrepresented in the structural database. For
smaller proteins, such “novel” folds are becoming ever more
rare. We found that, for “homologues excluded” databases, the
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predictions from AWSEM were slightly improved over previous
AMW results, where for two proteins, 1R69 and 3ICB,
impressive improvements are achieved. Especially for larger
proteins, over 100 residues, inclusion of a few homologues can
result in somewhat better predictions, but for smaller proteins,
the effect is marginal. Allowing the inclusion of some
homologues mimics the practical situation where one may be
unaware there are, in fact, structural homologues available
because they have not been singled out by the alignment
scheme. Finally, when the fragment memory database consists
of only homologues, even distant ones, surprisingly high
resolution predictions are made even for larger proteins. This
homology only instantiation represents a common practical
situation these days for smaller proteins where such distant
homologues can often be recognized with sensitive alignment
tools. Although specialized homology modeling algorithms,
such as MODELLER,32−34 are already able to produce
structures that are within 1−2 Å RMSD to the native structures
vs the 2−3 Å structures that are generated with AWSEM with
“homologues only” fragment memories, the former very high
quality results are based on a complete atomistic structural
representation, while AWSEM is rather coarse-grained, with
only three beads representing each residue. Because of its
coarse-grained representation, AWSEM can be used to study
the dynamics of real protein systems on experimentally relevant
time scales using ordinary computer hardware. AWSEM
provides an appealing alternative to purely structure based
models, which are efficient and can be accurate but lack non-
native interactions, and all atom simulations, which, while
increasingly reliable, require specially designed computer
hardware to access experimental time scales.

■ METHODS
Model. According to AWSEM, the position and orientation

of each amino acid residue is dictated by the positions of its Cα,

Cβ, and O atoms (with the exception of glycine, which lacks a
Cβ atom). The positions of the other atoms in the backbone are
calculated assuming an ideal peptide bond. A complete
description of the structural model and the force field is
given in the Supporting Information. For the current study, we

used only the alpha helical part of the hydrogen bonding
potential8 and a variation of the associative memory term
(herein denoted FM for “fragment memory”), which imposes a
local bias using short, overlapping fragments of nine residues or
less. The total energy function is given in eq 1.

= + + + +V V V V V Vtotal backbone contact burial helical FM (1)

Vbackbone is responsible for maintaining protein-like backbone
geometries. The full form of the backbone potential is shown in
eq 2.

= + + + +χV V V V V Vbackbone con chain rama excl (2)

Vcon ensures the chain connectivity through a number of
harmonic bonds. The correct bond angles are achieved by the
Vchain potential. Vχ, Vrama, and Vexcl are responsible for chirality
of the Cα atom, correct dihedral angle distribution, and inter-
bead excluded volume interactions, respectively.
Vcontact, Vburial, and Vhelical are each based on a different aspect

of protein physics. Vcontact is an amino acid type dependent
tertiary interaction term. It acts between pairs of residues which
are ten or more residues apart in sequence. In addition to being
amino acid type dependent, the strength of the Vcontact potential
also depends on distance separation and a local density. In the
case of low local density, we say that the interactions are water-
mediated and that they are protein-mediated in the opposite
case. The burial term represents the preference of an amino
acid of a specific type to be buried inside the protein or to be
on the surface. Parameters for Vcontact and Vburial potentials were
obtained by self-consistent optimization which maximizes the
ratio of the folding temperature to the glass transition
temperature for the model, Tf/Tg.

6

Vhelical is an explicit hydrogen bonding term that acts between
the carbonyl oxygen of residue i and the amide hydrogen of
residue i + 4. The strength of the interaction depends on the
helical propensity of both residues participating in the
interaction. This potential was recently introduced in the
work of V. Oklejas et al.8

VFM is a purely bioinformatical term, and makes use of
available experimental information from the RCSB PDB.35 The
form of VFM is given by eq 3.

∑ ∑λ
σ

= − −
−⎡

⎣
⎢⎢

⎤
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⎥⎥V

r r
exp

( )

2m ij
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m

ij
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2

2
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where the outer sum is over aligned memory fragments and the
inner sum is over all possible pairs of Cα and Cβ atoms within
the memory fragment that are separated by two or more
residues. rij is the instantaneous distance between the atoms, rij

m

is the corresponding distance in the memory fragment, λFM is a
scaling factor that can be used to change the strength of VFM
relative to other terms, and σij is a sequence separation
dependent width, which is given explicitly in the Supporting
Information.

Fragment Library. To generate the fragment memory
libraries, we first used the online protein sequence culling server
PISCES36 to generate a database of sequences that has known
structures in the PDB35 with a resolution of 3 Å or better, and a
specified maximum mutual sequence identity (MMSI). Two
databases were generated for 80 and 95% MMSI. We then
divided each target sequence into overlapping nine-residue
segments and used PSI-BLAST37 to find the 20 best matching
fragments in the databases described above. We used PSI-
BLAST’s E-value to determine the quality of an alignment.

Table 1. Target Sequences Information

homologues

database with
80% MMSI

database with
95% MMSI

code CASP contest length count best count best

1R69 63 1 52.38% 1 52.38%
1UZC CASP5 69 1 40.00% 1 40.00%
1UTG 70 2 57.35% 2 57.35%
3ICB 75 15 78.67% 16 78.67%
1BG8 CASP3 76 0 0
1N2Xba CASP5 101 1 51.92% 1 51.92%
256B 106 0 2 88.68%
4CPV 108 13 79.63% 19 79.63%
1CCR 111 14 64.08% 21 66.99%
1JWE CASP3 114 4 48.21% 4 48.21%
2MHR 118 2 45.76% 2 45.76%
1MBA 146 20 31.03% 26 32.64%
2FHA 172 16 83.14% 21 94.77%

ab indicates domain.
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For each target sequence, we generated three different
fragment libraries. For the first library, we excluded all related
sequences from the search by setting an E-value cutoff in PSI-
BLAST of 0.005. This typically leaves only those sequences
with less than 20% sequence identity with the target sequence.
We refer to this as the “homologues excluded” (HE) library.
Predictions made with this library are similar to “free modeling”
predictions, where no globally homologous sequences have
experimentally resolved structures. For the second library,
which we will call “homologues allowed” (HA), we excluded a
sequence from fragment search if and only if it had 95% or
higher sequence identity with the target sequence. For the first
two libraries, we used PSI-BLAST to search the sequence
database with 80% MMSI. For the third library, we used the
sequence database with 95% MMSI and chose memory
fragments only from sequences related to the target sequence
but again excluded sequences with 95% or higher sequence
identity to the target sequence. We will refer to this library as
the “homologues only” (HO) fragment library. As the number

of related sequences in the database was typically small, we
adjusted the strength of the VFM term based on the average
number of fragment memories found.

Targets. We looked at 13 α-helical proteins which were
considered in an earlier work.6 Some of them were used in past
critical assessment of protein structure prediction (CASP)
contests. The length of the target sequences ranged from 63 to
172 residues. Information about the target proteins is
summarized in Table 1.

Simulation Protocol. All simulations were carried out
using the LAMMPS molecular dynamics package,29 where we
implemented the AWSEM force field. To evaluate the de novo
structure prediction capability of our model, we first performed
simulations with the “homologues excluded” fragment libraries
for all target sequences. Next, to determine the effect of
including fragments from globally homologous sequences, we
performed a set of “homologues allowed” simulations on a
subset of the proteins (see Figure 1). Finally, for seven of the
target sequences, including the six largest, we performed
“homologues only” simulations, where the fragment memory
search included only the homologues of the target sequence
found in the database with 95% MMSI (see Figure 5 and Table
1). For each target sequence/fragment library combination, we
ran 20 molecular dynamics annealing simulations starting from
an extended conformation. We used the Nose−́Hoover
thermostat to cool the simulations over 4 million steps from
above to below the folding transition temperature and recorded
the coordinates every 1000 steps.

Analyses. To evaluate the predictive capability of our
model, we calculated the structural similarity of all snapshots
from the 20 trajectories of a given target sequence against the
corresponding experimentally determined structure. As specific
measures of similarity, both Q and RMSD were used, where Q
is an order parameter which compares pairwise distances
among residues between two structures, as elaborated below. It
varies between 0 and 1, with higher values corresponding to
higher similarity between the structures. The form of Q is given
in eq 4.

∑
σ

=
− −

−
−

< −

⎡
⎣
⎢⎢

⎤
⎦
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N N
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N

ij2
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Figure 1. Maximum Q score versus sequence length for the “homologues excluded” AWSEM (AWSEM-HE, light blue squares) and AMW-1 (green
diamonds) models. Maximum Q scores for “homologues allowed” (AWSEM-HA, dark blue triangles) and “homologues only” (AWSEM-HO, red
triangles) are also shown where available.

Figure 2. Prediction quality for 1UZC, including and excluding
disordered region. For each of the 20 annealing simulations, the
maximum Q values obtained are plotted in descending order. Blue
circles correspond to “homologues excluded” predictions and red
squares to “homologues allowed” predictions when the disordered
region is included in the calculation of Q. Green triangles correspond
to “homologues excluded” predictions and orange diamonds to
“homologues allowed” predictions when the disordered region is
excluded from the calculation of Q.
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where N is the total number of residues, rij is the instantaneous
distance between Cα atoms of residues i and j, rij

N is the same
distance in the experimentally determined structure, and σij is
given as σij = (1 + |i − j|)0.15.
To demonstrate the prediction quality for each of our targets,

we have plotted the best Q values from each of the 20 annealing
runs, sorting them in descending order (see Figures 2−4 and
9). These plots show how stable the predictions are, i.e., what
maximum Q values could be expected if fewer simulated
annealing runs were performed.
We used the CE alignment server38 to align the maximum Q

structures with native structures for visual comparison; see
Figures 5−7.

■ RESULTS

We have summarized our structure prediction results in Figure
1, wherein we have plotted the maximum Q value achieved for
a particular target sequence versus its sequence length. The
three data sets are for the “homologues excluded” (light blue
squares), “homologues allowed” (dark blue triangles), and
“homologues only” (red triangles) fragment libraries. We have

also plotted the AMW-1 results6 (green diamonds) for
comparison.
The results from both the “homologues excluded” and

“homologues allowed” fragment libraries are overall slightly
improved compared to the results of the AMW-1 model. The
“homologues only” library, which we generated only for
sequences with a sufficient number of homologues in our
culled database, significantly outperformed the AMW-1,
“homologues excluded”, and “homologues allowed” models
for all target sequences except 1MBA and 3ICB.
Maximum Q values for each of the 20 annealing runs (sorted

in descending order) are shown in Figures 3 and 4. These
figures show that, in most cases, the predictions are stable,
meaning that performing only 5−10 annealing runs would have
yielded a similar maximum Q value. Two exceptions worth
mentioning here are the “homologues only” prediction for
1JWE and the “homologues excluded” prediction for 1UZC.
For the former, the maximum Q value of 0.7 is the only point
above Q = 0.4. For the latter, there is a more modest “jump”
from Q = 0.45 to Q = 0.47 and 0.49. A close examination of the
results for 1UZC indicated that a disordered region on the N-
terminal was likely responsible for the erratic results. Figure 2

Figure 3. Prediction quality for 1R69 (a), 1UZC (b), 1UTG (c), 3ICB (d), 1N2Xb (e), and 256B (f). Blue circles correspond to “homologues
excluded” predictions, red squares to “homologues allowed” predictions, and orange diamonds to “homologues only” predictions.
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shows the results when this 11-residue segment was excluded
from the calculations of Q. Without this region, the prediction
is better on average and significantly more stable.
Finally, we compared our “homologues only” results with the

popular comparative structure prediction package MODEL-
LER32−34 using the same homologues that were used for the
“homologues only” simulations. The results are summarized in
Figure 8, where blue squares are the best RMSD values for
“homologues only” AWSEM and orange diamonds are the
MODELLER results.

■ DISCUSSION

As shown in Figure 1, the predictions made by AWSEM using
the “homologues excluded” fragment library are in general
improved compared to the AMW-1 results.6 Before giving a
more comprehensive comparison, we will briefly mention the
key differences between AWSEM and AMW-1. The two
models share the same backbone, direct contact, protein/water-
mediated contact, and burial potentials. However, AMW-1 used
globally aligned protein sequences to specify associative
memory interactions, whereas AWSEM uses short fragments
to bias the local conformational search. In addition, AWSEM

includes an explicit helical hydrogen bonding potential, and
does not use a radius of gyration biasing term. The latter was
shown to play an important role in correctly predicting the
structure of large, non-spherical proteins.7

For 1R69 and 3ICB, maximum Q values of ∼0.75 and ∼0.7
are highly significant improvements of ∼0.3 and ∼0.15,
respectively, compared to the AMW-1 predictions. Figure 5
shows an alignment of the predicted and native structures, and
comparative contact maps for 1R69 and 3ICB, which indicate
precise prediction of all secondary structure elements as well as
good agreement of the global folds. AWSEM predictions of
1BG8, 2MHR, and 2FHA were slightly worse than those of
AMW-1.
The number of homologues available for each sequence

varied from 1 to 20 (see Table 1). By performing predictions
with the “homologues allowed” fragment library, we
determined that the effect of including fragments from globally
homologous sequences among other fragments from non-
homologous sequences on the quality of prediction is small. In
fact, the improvement was statistically significant for four
proteins, of which only two had a change in the maximum Q
value of 0.1 or more. Specifically, the maximum Q values for

Figure 4. Prediction quality for 4CPV (a), 1CCR (b), 1JWE (c), 2MHR (d), 1MBA (e), and 2FHA (f). Blue circles correspond to “homologues
excluded” predictions, red squares to “homologues allowed” predictions, and orange diamonds to “homologues only” predictions.
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1CCR and 2FHA improved by 0.1 (from 0.33 to 0.43) and by
0.16 (from 0.319 to 0.474), respectively. The improvement for
2FHA can be seen in the structural alignment and contact maps
in Figure 6. Unlike the “homologues excluded” prediction,
wherein only three of the five helices are well formed, in the
“homologues allowed” prediction all helices are formed and
four of them, with the exception of the small C-terminal helix,
have the correct mutual orientation and packing. This is
particularly impressive given the size (172 residues) and non-
symmetric shape of 2FHA.
For five of the seven targets predicted using the “homologues

only” library, AWSEM achieved a maximum Q greater than 0.7.
For 2MHR, a maximum Q = 0.62 and minimum RMSD of 3.44
Å was obtained. For 1MBA, the maximum Q obtained was 0.4.
To evaluate these results, we compared them with structure
prediction results obtained using the MODELLER package.
This package can do all-atom comparative modeling of proteins
using experimentally determined structures, and their sequence
alignments with the target sequence by satisfying spatial
restraints. MODELLER was able to predict the structure of
all larger proteins within 2 Å RMSD resolution (Figure 8).
Except for 1MBA, the difference in RMSD between the
AWSEM prediction and the MODELLER prediction is
between 1 and 2 Å. This implies that, despite being a coarse-
grained model lacking explicit side chains, AWSEM can be used
to make high resolution predictions for sequences that have
homologues with experimentally determined structures.
There are several possible contributing factors to AWSEM’s

relatively poor prediction of 1MBA. Of all the target sequences,

1MBA has the homologues with the lowest sequence identity,
with a maximum of 32.64%. As a result, even though there are
26 homologues in the database with 95% MMSI, the number of
fragments assigned per position varied from 0 to 14 with an
average value of 3. This inhomogeneity cannot be overcome
simply by scaling the strength of the fragment memory term. In
such cases, it would be useful to introduce a smarter
normalization and weighting scheme within the fragment
memory potential based on the number of interactions per
residue, fragment length, and alignment quality. The fragment
memory potential could also potentially be improved by
optimizing with respect to the fragment length and fragments
per position. We did not test these possibilities here. Finally,
unlike MODELLER, AWSEM lacks all-atom side chains, which
may play an important role in three-dimensional packing. This
type of effect might accumulate and become particularly
important for large proteins, such as 1MBA (146 residues). We
should also bear in mind that MBA has a heme cofactor which
is entirely omitted in our present simulations.
Another important factor to consider when analyzing the

quality of prediction results is the presence of disordered and
flexible terminal regions (or tails). Because these regions lack a
static structure, “errors” in the prediction of these regions will
have the effect of artificially lowering and broadening the
distribution of Q values and RMSD scores we get. This
broadening effect is apparent in Figure 2, where exclusion of
the flexible tail from Q calculations of 1UZC collapses the
“homologues excluded” and “homologues allowed” results,
causing them to both be more similar to each other and making

Figure 5. Structural alignments and comparative contact maps of the maximum Q score structures obtained from “homologues excluded” predictions
for 1R69 (on the left, Q = 0.74, RMSD 1.6 Å) and 3ICB (on the right, Q = 0.703, RMSD 2.4 Å).
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them individually more stable. Similarly, excluding the flexible
tail (first 22 residues) from the Q calculations of 1N2X (see
Figure 9) systematically increases the maximum we obtain for
Q in each simulation by 0.1.

■ CONCLUSIONS

Steady progress has been made in the last two decades in
addressing the practical aspect of the “protein folding problem”,
namely, predicting the three-dimensional structures of proteins
from their sequence. While early efforts were almost exclusively
based on knowledge-based potentials, more recent work uses a
mix of physical and bioinformatic approaches. The rapid
advances in designing and building specialized computer
hardware already allow the use of all-atom explicit solvent
simulations to successfully predict structures of some small
proteins.39 Nevertheless, given that the average human protein
is over 400 residues, and many important and poorly
understood biological processes involve complex multiprotein
or nucleic acid assemblies, it will be rather difficult to apply
atomistic simulations to routinely address these large length-
and time-scale processes for some time. Hence, there remains a
significant need for the development of coarse-grained, yet
preferably accurate protein force fields. Most prior kinetic and
mechanistic studies using coarse-grained protein force fields
relied on native structure based approaches, which assign
favorable interactions to native contacts, giving in concrete
terms a folding funnel. While such approaches are physically
meaningful, rooted in the energy landscape theory of protein
folding, they can underestimate or often completely ignore the
role of non-native interactions, cannot be used for proteins

without solved structure, and also cannot be directly applied
without modification to partially or fully disordered proteins.
The above discussion emphasizes a need for development of a
coarse-grained protein force field which is substantially based
on known physical interactions, is amenable to molecular
dynamics simulations, and can be used for both de novo protein
structure prediction as well as probing protein folding and
dynamics.
AWSEM, which is a successor to the AMH and AMW

approaches to protein structure prediction, represents one such
force field. It combines a large number of physical interactions,
from backbone terms to direct and water-mediated interactions
and hydrogen bonding, with structural biases that are local in
sequence, based on the alignments of fragments of nine
residues or less of the target protein to the local segments
found in a protein database. The force field was implemented
from the ground up in C++, leveraging the LAMMPS
molecular dynamics package. It can be used not only for
protein structure prediction but also, for example, to study
protein folding kinetics, functional dynamics of the native state,
and binding and folding processes. In ongoing works, our
research groups plan to explore the extensions of AWSEM to
simulate disordered proteins and interactions of proteins with
membranes and DNA.
In this work, we have shown that the best structures

produced by AWSEM in the “blind prediction mode”, where
we ensured that no global homologues were included in the
local fragments database, were either comparable in quality or
improved over the prior AMW efforts in blind prediction. We
have also analyzed the consistency of prediction runs. We find
that when poorly defined loops or tails are excluded from the

Figure 6. Structural alignments and comparative contact maps of the maximum Q score structures for 2FHA, with the “homologues excluded”
prediction on the left (Q = 0.319, RMSD 12.4 Å) and the “homologues allowed” prediction on the right (Q = 0.476, RMSD 8.8 Å).
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structural comparisons, then there is considerable consistency
between different runs for almost all proteins. For some
proteins, such as 1R69 and 3ICB, impressive predictions were
achieved, with 1.6 and 2.4 Å RMSDs to the corresponding
native structures. For larger proteins, over 100 residues, the
consistency of predictions has somewhat improved compared
to AMW. For these larger proteins, AWSEM obtains maximal
Q values in the range 0.35−0.4. This is often indicative of many
native-like structural elements and even a roughly correct
overall fold in some cases but with a number of packing defects
among the secondary structural elements. How to take de novo
structure prediction of large proteins to the high-resolution

levels that are achievable for many smaller proteins is a
challenging question, no doubt requiring further efforts in force
field development and parameter optimization.
If the goal is not blind protein structure prediction but

instead investigation of protein folding kinetics and protein
function, it may be advisible to bias the fragment library with
homologues of the target protein, even distant ones. While

Figure 7. Structural alignments and comparative contact maps of the maximum Q score structures for 4CPV, with the “homologues excluded”
prediction on the left (Q = 0.396, RMSD 5.8 Å) and the “homologues only” prediction on the right (Q = 0.784, RMSD 1.3 Å).

Figure 8. Comparison of MODELLER (green diamonds) and
AWSEM (blue squares) prediction quality, showing RMSD in Å to
the experimental structure versus sequence length in amino acids.

Figure 9. Prediction quality for 1N2X, including and excluding the
first 22 residues, a disordered region. For each of the 20 annealing
simulations, the maximum Q values obtained are plotted in descending
order. Blue circles correspond to the maximum Q values when the
disordered region is included, and the red squares correspond to the
maximum Q value when the disordered region is excluded from the
calculation of Q.
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exploring this possibility, we have shown in this work that even
large proteins (on the order of 200 residues) fold to structures
that are similar to the corresponding native structures within
1−3 Å RMSD. Hence, by appropriately tuning the fragment
library, one may use AWSEM-based coarse-grained modeling of
proteins either for de novo structure prediction or, in cases
where the structures of distant homologues are known, kinetics
and dynamics can be the main aims of the study. As an
alternative to using experimentally determined structures for
memories, snapshots of highly populated states sampled in
atomistic simulations can be used as fragment memories for
subsequent AWSEM coarse-grained simulations of the same
protein.40

Since AWSEM is an open-source package, many groups may
choose to contribute to its further development and
applications to new areas of research. The comprehensive
description of the AWSEM force field along with all force field
parameters are elaborated in the Supporting Information,
allowing the possibility of reimplementing AWSEM in
alternative programming environments.
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Sali, A. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291−325.
(33) Sali, A.; Blundell, T. J. Mol. Biol. 1993, 234, 779−815.
(34) Fiser, A.; Do, R.; Sali, A. Protein Sci. 2000, 1753−1773.
(35) Berman, H.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.;
Weissig, H.; Shindyalov, I.; Bourne, P. Nucleic Acids Res. 2000, 28,
235−242.
(36) Wang, G.; Dunbrack, R. Bioinformatics 2003, 19, 1589−1591.
(37) Altschul, S. L.; Madden, T.; Schaff̈er, A.; Zhang, J.; Zhang, A.;
Miller, W.; Lipman, D. Nucleic Acids Res. 1997, 25, 3389−3402.
(38) Shindyalov, I.; Bourne, P. Protein Eng. 1998, 11, 739−747.
(39) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,
R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan,
Y.; Wriggers, W. Science 2010, 330, 341−346.
(40) Kwac, K.; Wolynes, P. G. Bull. Korean Chem. Soc. 2008, 29,
2172−2182.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp212541y | J. Phys. Chem. B 2012, 116, 8494−85038503

http://pubs.acs.org
mailto:pwolynes@rice.edu
mailto:gpapoian@umd.edu

