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ABSTRACT: During allosteric motions proteins navigate
rugged energy landscapes. Hence, mapping of these multi-
dimensional landscapes into lower dimensional manifolds is
important for gaining deeper insights into allosteric dynamics.
Using a recently developed computational technique, we
calculated the free energy difference between the open and
closed states of adenylate kinase, an allosteric protein which
was extensively studied previously using both experimental and
theoretical approaches. Two independent simulations indicate
reasonable convergence of the computed free energy profiles.
The numerical value of the open/closed free energy difference is only 1−2 kBT, much smaller than some of the prior estimates.
We also found that the conformations structurally close to the open form still retain many LID-NMP contacts, suggesting that
the conformational basin of the closed form is larger than expected. The latter suggestion may explain the discrepancy in relative
populations of open and closed forms of unligated adenylate kinase, observed in NMR and FRET experiments.

■ INTRODUCTION
It is well-known that energy landscapes underlying protein
functional dynamics may be rugged.1−8 The protein dynamics
on these landscapes involve the interconversion among myriad
of conformational states that take place on a spectrum of time
scales from nanoseconds to seconds.4 The roughness of the
landscape is a result of a many-body interaction between
the protein chain, solvent molecules, and ions. In many cases,
the ruggedness means glassy dynamical behavior and lack of
self-averaging, preventing a generalized statistical description of
the functional dynamics.9,10 Therefore, computing detailed
maps of the energy landscapes is indispensable for under-
standing mechanisms of functional processes of proteins, such
as allosteric regulation,9,11 native state dynamics,3−5,9,12 or
biopolymer translocation.13 One approach to mapping of the
energy landscapes is to start from calculating the free energy
difference between two specific protein conformations, for
example, two allosteric states. Then, in principle, one could
extend this calculation to many more conformations of a
protein, leading to a high resolution view into the energetic
topography of the native basin.
Among a number of proteins used to gain insights into the

interplay between protein dynamics and function, adenylate
kinase (ADK) stands out as one of the most extensively
studied, in the context of allosteric transitions. The structures of
ADK’s allosteric states, known as the open and closed forms,
have been solved long ago.14 Also the dynamics of conforma-
tional change in ADK has been a topic of numerous
experimental15−22 and theoretical23−28 studies. However, the
free energy difference between the two main allosteric states
of ADK has not yet been computed using rigorous approaches
based on explicit solvent force fields. Meanwhile, this free

energy difference is one of the important aspects underpinning
the nature of ADK catalytic action. We calculate it in this work.
Extracting free energy differences from all atom simulations

of proteins presents a formidable challenge. The difficulty
largely stems from a large number of degrees of freedom which
encumbers full sampling of the thermodynamic states. In a
prior work, structurally based umbrella sampling free energy
calculation for ADK was carried out with the implicit solvent.29

As elaborated in a recent publication,30 the corresponding
collective coordinate for umbrella sampling29,31 used to
compute conformational free energy differences has significant
shortcomings, and may potentially lead to artifacts. A key
problem of the widespread structural coordinates like
ΔrmsdAB(X) = (rmsdXA − rmsdXB) (the difference between
RMSDs of an intermediate structure X from the reference
structures A and B) is the fact that these coordinates have an
unacceptably high degree of structural degeneracy. Namely, in
these coordinates a single value maps into a substantial number
of unrelated conformations, which defeats the whole purpose of
measuring conformational free energy difference between two
distinct states, since the very definition of states is inconsistent.
To illustrate the structural degeneracy we have used ξ(QA,QB) =
ΔQ as a reaction coordinate to map the conformational space
of two structurally highly similar states of a small model protein
(see Figure 1). As one can see from the Figure 1, even in this
favorably picked case the structural degeneracy is quite large,
with states that are structurally dissimilar to both conformations
lumped into the reference basins. To address this problem,
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we have recently developed a rigorous technique that permits
calculation of conformational free energies between two arbi-
trary polymer conformations from explicit solvent all atom
simulations, where by two conformations we mean two well-
defined regions of the polymer molecule phase space.30 Our
method largely consists of identifying a reaction coordinate
which correlates with conformational transformation. Combin-
ing our coordinate with the enhance sampling simulations
(such as umbrella sampling) provides a route for computing
free energies or any other relevant equilibrium thermody-
namic parameters regarding the transition. As demonstrated
in the current work, this technique can be applied to large
proteins, over two hundred residues, simulated in explicit
solvent. Other approaches which attempt to accomplish the
same goal use uncontrolled approximations32−34 or create
unphysical intermediate states35 which makes their application
to complex explicit solvent bimolecular systems rather challeng-
ing (see ref 30 for a more detailed discussion of alternative
techniques).
The proposed conformational reaction coordinate smoothly

morphs one allosteric state into another, preserving structural
locality near the allosteric basins.30 The latter is a critical
requirement missing in many commonly used alternative
approaches. Locality means that if for a conformation X the
value of the variable ξ(X) is close to the value of the variable in
the closed state ξ(closed), then X is structurally similar to the
closed state. The same statement is also true for the open
state.30 Another important ingredient of the technique is the
confinement potential which alleviates the problem of sampling
the degrees of freedom transverse to the umbrella sampling
variable. Its effect on the calculation amounts to enveloping the
dynamic trajectories of the system into a phase space “tube”
without affecting the neighborhood of the two allosteric states.
The tube prevents sampling of the phase space regions of high
conformational entropy which contain unfolded and other
nonrelevant states, as it is not necessary in the case when only
free energy difference between the two conformations is
calculated. One of the goals of this paper is to demonstrate

that this new method, which was previously applied30 to a
20-residue protein, Trp-Cage, straightforwardly scales up to 1
order of magnitude larger proteins.
Adenylate kinase (ADK) is an important member of kinase

family of proteins which catalyzes a key metabolic step of
phosphoryl transfer between ADP molecules: ADP·Mg+2 +
ADP↔ ATP ·Mg+2 + AMP. Structurally, ADK consists of three
domains: LID, NMP, and CORE.14 The CORE domain
comprises the bulk of the protein and is relatively static during
allosteric transition; meanwhile, NMP and LID form contacts
with entering substrate by covering the bound substrate and
preventing it from diffusing into the solvent environment.
Many of the previous computational studies focused on the
mechanistic aspects of the collective domain motions, which is
correlated with the enzymatic activity.18 More specifically those
studies identified the key rate limiting step of LID domain
opening when bound to a ligand.25,36

In this work we find the free energy difference between the
states in the absence of ligand. In significant contrast to the
previously reported high (tens of kBT) values of the free energy
difference from implicit solvent simulations,29 we find that free
energies of both states are comparable, with the difference on
the order of ∼1−2 kBT. In addition, we find that, quite
unexpectedly, interfacial contacts between LID and NMP
domains, characteristic of the closed state, start to form even
when the conformation is close to the open state. In other
words, the transition from the closed to the open basin might
be characterized by a late transition state.

■ FREE ENERGY CALCULATION TECHNIQUE

The central question addressed by our method30 can be stated
as follows: given two experimentally determined structures,
A (open) and B (closed), how can we estimate the free
energy difference ΔFAB between them? Here we assume a
time scale separation between fast sampling of the similar
conformations around both open and closed states, and slow
transitions between the states. Hence, the neighborhoods of
the transition end points form corresponding basins of attrac-
tion (conformational basins), having a specific size depending
on the molecular structure and intermolecular interactions.
Thus, the conformational free energy difference that we are
after is in fact the free energy difference between the con-
formational basins of A and B. The size of the basins should
be chosen from the considerations external to our calculation
technique.

The umbrella sampling variable (or reaction coordinate)
ξ(X) which is local near the allosteric states and continuously
morphs one structure into another is described by the following

Figure 1. Illustration of a reaction coordinate degeneracy problem for
defining conformational basins. On the plot are shown the
conformational states of a model protein (trpcage, PDB ID 1L2Y)
for which the ΔQ = QA − QB reaction coordinate was tested. Different
colors correspond to the trajectories from different umbrella windows.
The selected snapshots highlight the structural heterogeneity in the
conformational ensembles of the basins A and B.

Figure 2. Crystallographic structures of open (4AKE) and closed
(1AKE) forms of ADK are shown.14
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functional form:30
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where s(X,Y) is a measure of structural similarity between
conformations X and Y, such as rmsd (root mean square
deviation) or fraction of shared contacts (Q). When overlap
parameter Q is used in defining s(X,Y), then s(X,Y) = 0 means X
and Y have nothing in common, and s(X,Y) = 1 means it is the
same conformation. The conformational phase space, therefore,
maps into a square with sides graded from 0 to 1. Regarding the
variable ξ (see Figure 3) defined in eq 1 as elevation above this

square, it corresponds to a positive circular Gaussian “peak” placed
on the basin of conformation B and a negative circular Gaussian
“pit” placed on conformational basin A.30 The ρ in the equation is
a parameter which controls the resolution of ξ and has to be
decided based on the specific aims of the problem (see Table 1). If

its value is too large, the resolution coarsens and might not capture
the subtle structural differences in the respective basins leading to

more or less random free energy estimates. On the other hand
making resolution too high at best increases the computational
demand, by requiring more windows and higher values for spring
constants to adequately sample the entire pathway. For s(X,Y), we
chose the structural overlap parameter widely employed in studies
of protein folding and spin glasses,37 which is simply a generalized
form of the fraction of shared contacts:

∑= = −
−

σ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥s Q

N

r r
(X,Y) (X,Y)

1
exp

( )

2i j

ij ij

,

X Y 2

2
(2)

where σ sets the length-scale for the native contacts and is typically
on the order of Cα−Cα distance, e.g., ∼1. Hereafter, for the
notational simplicity we will avoid the explicit indication of path
variable X and instead will write the similarity as QA and QB. The
immense volume of the phase space orthogonal to umbrella
sampling variable ξ with varying spectrum of relaxation time scales
at different points also represents a problem. Whenever the
relaxation of transverse fluctuations exceeds the simulation times
the trajectory may fall in an “entropic trap” and potentially not
reach equilibration and convergence.
To alleviate the difficulty of adequately sampling transverse

fluctuations, we designed a confining potential Vc, which is
added to the Hamiltonian and is meant to block the trajectory
from escaping into high conformational entropy regions.
Confinement potential Vc in ′ = + Vc can be chosen
such that it is equal to zero near the allosteric states, in which
case the sought for free energy will not be affected by the virtue
of the following equation:
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where β = 1/kBT, Γ represents the full conformational space
and the ΓA and ΓB are the portions of full space that correspond
to conformational states of A and B (where Vc = 0).30 The
particular form of confinement potential employed in the
present work is chosen to have the following functional form
(see Figure 4) which also illustrates the idea of phase space
“tube”:

= ε − κ − − −
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V Q Q Q a Q a R
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The potential on the (QA,QB) plane can be envisioned as two
walls of height ε of hyperbolic shape (see Figure 4) with radii
R1 and R2. The κ defines steepness of these walls (or hardness
of the phase space tube enveloping the dynamic trajectory). a1
and a2 are constants that determine positions of the hyperbolae.
The optimal tube should allow many pathways connecting the
open and closed states, but not excessively many. The particular
form for the confining potential is not critical, since it is
eventually canceled when computing the free energy difference
between the conformations A and B. However, it should have a
smoothly rising “walls”, which would push the trajectory within
the confines of the tube without causing abrupt jumps in the
trajectory. Ideally, the confining potential should enclose the
actual transition pathway along with the reference basins.
However, if only the free energy difference between the basins

Figure 3. Contour plot of the reaction coordinate ξ(X),30 where X is
an arbitrary point of the conformational space that maps into QA(X)
and QB(X).The direction along which we sample conformations is
indicated with a black arrow.

Table 1. Parameter Values Used in the Auxiliary Potentials

parameter numerical value

Q(A,B) 0.856
ρ 0.06
σ 1.5
kspring 100 kcal mol−1

ε 10 kcal mol−1

κ 5000
a1 0.76
a2 0.88
R1 0.0063
R2 0.0044
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is calculated, it is not necessary. To find the shape of the tube
we ran short (20−50 ps) simulations in each umbrella window,
Ui

umb(ξ) = kspring(ξ(QA,QB) − ξi)
2 without confinement,

obtaining an approximation to a dominant transition pathway,
or, at least, a preferencial dynamics in a given ξ umbrella
window. The general shape is indicated by the regions sampled
by the preliminary short trajectories, which overall are localized
in the upper right corner of the (QA, QB) plot (see Figure 3).
The hyperbolic shape of the “tube” is a reasonable choice for
the purpose of confining trajectories (irrespective of a protein)
in the upper right corner, being one of the simplest smooth
analytic curves, a quadratic polynomial. It is also natural to
choose hyperbolic tangent for the smooth rise of the wall, the
height of which is controlled by ε . One typically assigns some
arbitrary high value for ε (e.g., 10.0 kcal/mol). The steepness κ
on the other hand should be high enough (see Table 1) to
prevent the trajectories from overcoming the wall, but low
enough to not cause numerical instabilities when computing
the forces near the boundaries.
The tube parameters, a1, a2, R1, and R2 (see Table 1), which

determine the position and thickness of the tube, have to be chosen
in such way as to leave the reference basins intact. Therefore, there
is a minimally possible width of the tube. On the other hand, the
width should not be too large, so the trajectories equilibrate on
the time scales comparable to the length of the simulation and
also allow for overlap of trajectories in the neighboring windows.
Thus, to determine the parameters we first run preliminary short
simulations by gradually raising the thickness of the tube until the
two of the mentioned conditions are satisfied.

■ COMPUTATIONAL DETAILS

As starting structures we used atomic coordinates of the closed
(1AKE) and open (4AKE) forms of ADK taken from the
Protein Data Bank14 (see Figure 2). After stripping off the
ligand coordinates from the raw crystallographic structure of
the closed state, we immersed both conformations in the
TIP3P water boxes and added Na+ and Cl− ions to mimic the
physiological concentration of a cell (∼140 mM L−1). Total
number of ions and water was chosen the same for both
systems. All subsequent simulations were performed with the
program NAMD,38 utilizing CHARMM27 forcefield.39 After

initial minimization steps with the constrained and uncon-
strained protein coordinates, we heated the systems to 300 K
by performing 200 ps NVT simulations. NVT simulations were
carried out in the contact to heat bath, emulated by Langevin
dynamics with the friction coefficient of 4 ps−1. After heating
steps we equilibrated the density of the system by performing
2 ns NPT simulation.
Fully equilibrated systems were then replicated among 121

windows. Approximately half of the umbrella sampling simulations
were initiated from the closed form and the other half from the
open form. We accumulated a series of ∼1.0 ns trajectories,
carrying out two independent umbrella sampling simulations for
each window. The simulations with added umbrella potentials
were performed with the LAMMPS software.40 Before productive
simulations, we ran multiple short trajectories in all windows in
order to probe the local landscape and find optimal spring
constants that guarantee sufficient overlap of reaction coordinate
distributions. We have found that uniform spring constant values
(see Table 1) across the equally spaced windows (δξ = 0.02)
sufficed to generate excellent overlap between umbrella sampling
variable distributions of neighboring windows. The shape of the
confining wall has been chosen such that it leaves the basins of
the reference conformations unchanged meanwhile enveloping all
the intermediate ones with a high walled tube. Since there is a time
scale separation of backbone motions and side-chain rotations we
have included only Cα atoms in the definition of Q. We limited the
summation in Q to only those pairs of Cα atoms that are closer
than 12 Å to each other in either of the conformations. Such
definition of a contact has been used in the coarse grained protein
folding studies.41 By introducing distance cutoff in the definition of
Q we significantly reduce the large number of conformational
states which on average contribute equally to both basins and
therefore act as a “noise”.

■ RESULTS AND DISCUSSION
To ascertain whether our simulations are capable of
reproducing the sought free energy difference to a sufficient
degree of accuracy, we have performed two independent
simulations using different sets of initial conditions, where the
initial atomic velocities were randomized in all windows, hence,
producing trajectories that are mutually unrelated. As one can
see in Figure 5, the resulting two free energy profiles are in
semiquantitative agreement, showing similar basic features.
Another interesting feature of the obtained free energy profiles is
the well pronounced minima near the end points of the reaction
coordinate. These correspond to the basins of open and closed
conformations of ADK. In the case of ADK, there are no external
considerations which dictate the choice of the physically meaningful
size of the conformational basins. Therefore, one could consider
ADK conformations falling within the corresponding minima
of the end points as belonging to one basin, leading to
approximately |Δξ| = 0.2 defining the basin size.
After defining the reference basins, one can obtain the

conformational free energy by integrating the potential of mean
force along the reaction coordinate in the respective basins
(defined with the boxed regions in Figure 5)
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where F(ξ) is the profile in Figure 5. The free energy difference
between the two allosteric states estimated from two

Figure 4. Potential Vc from eq 4 forms a “creek” confining the
sampling trajectories inside. The shape of the “creek” is hyperbolic and
the rise of its shores is hypertangential.
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uncorrelated trajectories was found to be 1.5 ± 0.5 kBT. This
small value of free energy difference is in marked contrast with
the work of Arora et al.29 where the potential of mean force as a
function of rmsd was estimated to be tens of kBT higher in free
energy upon approaching the basin containing the ensemble of
closed conformations.
We suggest that the significant discrepancy between the

current and previous results may be explained by a combination
of the following two factors: (1) the implicit solvent that has
been used in the earlier work is known for introducing a strong
conformational bias42 and (2) the reaction coordinate used in
the previous study is not local near the allosteric states, which
may lead to artifacts.30 The free energy profile computed in the
current work is in semiquantitative agreement with the single
molecule FRET and NMR spin relaxation experiments which
reported a relatively fast collective domain motions that take
place on a nanosecond time-scale18,19 and a relatively rarer
event of attaining catalytically competent closed conformation
(e.g., the one that is consistent with X-ray structure for the
closed state) on a microsecond time scale.17 From the kinetics
perspective based on Kramer’s theory,43 if the closed state is
reached within a microsecond or faster from the open state,
then closed state’s free energy (as well as the barrier for the
transition) should be within several kBT from the open state
(assuming a pre-exponential factor which is characteristic of
polypeptide chains44). NMR experiments with ligated ADK
(achieved by excessive ATP concentration) also report22 the
difference between the conformational basins to be on the
order of 1 kBT. Finally, when coarse-grained computer
simulations of ADK were parametrized by experimental data,
the resulting difference in the free energies of open and closed
states was also estimated24 to be 1−2 kBT.
In addition, the obtained free energy profile offers a simple

way of resolving the discrepancy concerning the dominant
conformations that has been reported by NMR and single
molecule FRET experiments. A few years ago, Hanson et al.20

showed that in FRET experiments, closed-like conformations
are sampled more often. In contrast, the solution NMR
suggests a picture19,45 where open-like conformations are
heavily populated and transitions to the closed form occur

occasionally. We explain the discrepancy in the following way:
the conformational basin of the open state is narrower and well-
defined, whereas the basin for the closed state extends further
along the reaction coordinate. Therefore, based on this line of
reasoning, there is not a unique way to define the closed form
of ADK, and other external criteria should be invoked to make
the definition consistent with the problem. To clarify the latter
statement, if we take a more generous definition of the closed
basin, by extending the limit of integration in eq 3 for the closed
state beyond the boundaries of the yellow box in Figure 5, the
free energy gap between closed and open states narrows con-
siderably. We thus attribute the discrepancy between two
different experimental techniques to the distance-sensitivity
difference intrinsic to NMR and FRET that have skewed the
conformational distribution in favor of one or the other form.
The transition path taken by the trajectories in our simulations

may not correspond to the actual one (although the tube path was
chosen based on short simulations which likely indicate some
conformational preferences of the protein), but one can still infer
useful information about the intermediate steps. For instance, the
barrier in our profile provides the upper limit to the actual barrier,
since cutting off parts of the phase space can only make some
pathways unavailable to the trajectory, which, in turn, will remove
the contribution of these cutoff pathways to lowering the free
energy of the transition state.
Apart from the thermodynamics, one can gain further insight

into the nature of conformational transition by analyzing the
structural evolution across the umbrella sampling windows.
Comparing pairwise interatomic distances in reference states,
we have identified the evolution of interfacial contacts, the
contacts that are being broken when going from closed to the
open form on the interface of LID and NMP domains. Using
the interfacial contacts we have computed Qint for all confor-
mations in each window and plotted the distribution of Qint
values against the order parameter, ξ, that has been used in the
free energy simulations (see Figure 6). From the plot one can

see the nonlinear dependence of the order parameter on the
fraction of native contacts, with an abrupt transition that
coincides with the location of the barrier in Figure 5.

Figure 5. Free energy of ADK as a function of reaction coordinate ξ is
plotted. Two different plots correspond to two completely
independent simulations. The orange boxes indicate the definitions
of the basins used for calculating the free energy differences according
to eq 5.

Figure 6. Each point on the plot corresponds to a snapshot from the
simulation, for which a reaction coordinate ξ and a fraction of
remaining interfacial contacts Qint are calculated. Even close to the
open state (in terms of ξ, and therefore structurally) many interfacial
contacts are still present.
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On the other hand, a naiv̈e expectation for the open to close
transition would be that of an abrupt disruption of contacts
when the LID-NMP domains smoothly and linearly separate
from each other by a few ngströms. However, contrary to what
one would expect, a significant fraction of the interfacial
contacts are retained even when the system has moved further
away from the basin of the closed state (see Figures 6 and 7).

This observation might be an artifact from confinement
potential, but about 20% of interfacial contacts are retained
close to the open state, where the influence of the confinement
potential is low. This relation between the structure and
interfacial contacts means that conformational change is
structurally more intricate, involving partial breakage of
contacts taking place gradually or in several stages.
The shallowness of the landscape near the closed state

(corresponding to ξ being roughly in between 0 and 1)
translates into a higher conformational entropy for the
ensemble of closed-like conformations, which are qualitatively
defined as collection of states with higher structural similarity to
the reference closed state. This somewhat unexpected result is
supported by the results of our local “conformational
heterogeneity” calculations in the α-helices and the B factor
distributions16 measured for the crystal structures of the two
forms of the ADK. We quantify the so-called local “conforma-
tional heterogeneity” by the distribution of a variable Qhelix,
which is calculated as in eq 2 but only the residues that are part
of an α-helix are included in the sum. A broader distributions of
Qhelix implies a higher “conformational heterogeneity” and hence
a higher conformational entropy for the particular α-helical
segment and vice versa. By computing the distribution of Qhelix
in the basins of an open (ξ ≈ −1) and the closed states (ξ ≈ 1)
we noticed that overall the helices in the closed from are
characterized by a lower conformational heterogeneity
compared to the open form (see Figure 8). In particular, the
α-helix composed of residues: 43−53 in the NMP domain
showed striking contrast in terms of the “conformational
heterogeneity” of the two forms. Approximately a half of the
indicated residues are in disordered state in the closed form of
the ADK (according to the DSSP measure46) and hence show a
much higher conformational heterogeneity compared to the
ordered form (see Figure 8), where the same residues are all
part of an α-helix. From the protein physics viewpoint this
observation can be explained by the local frustration in the

closed form of the ADK, where the multiple contacts between
the domains are made at the expense of some of the contacts
which stabilize the helices within the respective domains. From
the thermodynamic point of view, one may entertain the idea
that after the domain closure the free energy gained from
forming the contacts is partially channeled into the helices by
increasing their conformational heterogeneity. This essentially
amounts to an “entropic transfer” in the ADK from the
interdomain flexibility of the open form to the intrahelix
disorder in the closed form. The net effect of this entropic
transfer mechanism would be to diminish the free energy gap
between the two corresponding allosteric states, which, in turn,
would allow for easier regulation by small ligands of allosteric
switching and the enzyme recycling.
Other native contacts might be more significant to the tran-

sition than the interfacial ones. The retention of the interfacial
contacts near the open state prompts one to speculate that the
transition state ensemble is more likely to be located closer to
the open state. From the kinetic point of view this would be an
indication of an anti-Hammond type behavior: more structural
reorganization is needed to reach the transition state, if one
starts from the closed, than from the open state, while the free
energy increase is, on the contrary, larger if one starts from the
open state.47,48

■ CONCLUSION

The free energy difference between the open and closed forms
of ADK in the absence of ligands, computed in this work,
turned out to be rather small (∼1−2 kBT). Two fully
independent calculations indicate that the results are reasonably
converged and reproducible. From the biological perspective,
the relatively small free energy difference between the allosteric
states may facilitate fine control of allosteric transition by
environmental perturbations and signaling. In addition, we
found that even when some of the NMP-LID interfacial
contacts are formed, the typical conformations are still
structurally more similar to the open form, suggesting a late
transition state for domain opening. Our conformational
heterogeneity calculations further clarify the mechanistic and
thermodynamic signature of the transition. We have found that

Figure 7. Intermediate structures along the pathway, selected from the
appropriate histogramming windows. The transition from the closed
to the open state goes through many closed like states followed by an
abrupt opening of the NMP domain in the later stages.

Figure 8. Evidence for the local frustration in the closed form of the
ADK. The blue and green histograms are the distribution of Qhelix for
the closed and the open forms respectively. σopen and σclosed denote the
standart deviation in the respective distributions.
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in closed state domains have higher conformational hetero-
geneity compared to the open form which acts as a
counterweight balancing the entropic loss associated with
domain closure. We rationalize these observation by providing
a mechanism of entropic transfer, which is a way for the
allosteric transition to lower the free energy gap between the
end point states.
We conclude that the recently developed method for

calculating conformational free energy differences30 can be
applied to systems of real biological importance, for instance,
large proteins like adenylate kinase. In order to calculate a free
energy profile corresponding to the actual kinetics of the
allosteric transition, the confinement tube trajectory should be
dynamically updated, instead of being statically defined,
allowing the system to find the dominant path of minimum
free energy. The latter goal will be pursued in our subsequent
studies.
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