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Internal and external fluctuations are ubiquitous in cellular signaling processes. Because
biochemical reactions often evolve on disparate time scales, mathematical perturbation techniques
can be invoked to reduce the complexity of stochastic models. Previous work in this area has
focused on direct treatment of the master equation. However, eliminating fast variables in the
chemical Langevin equation is also an important problem. We show how to solve this problem by
utilizing a partial equilibrium assumption. Our technique is applied to a simple
birth-death-dimerization process and a more involved gene regulation network, demonstrating great
computational efficiency. Excellent agreement is found with results computed from exact stochastic
simulations. We compare our approach with existing reduction schemes and discuss avenues for

future improvement. © 2008 American Institute of Physics. [DOI: 10.1063/1.3027499]

I. INTRODUCTION

With the decoding of the genomes and proteomes of
various organisms, a key focus of cell biology has shifted to
uncovering the organization and functioning principles of
regulatory and signaling networks. Recent high throughput
approaches have accelerated this transition not only by iden-
tifying biomolecular species involved in various cellular pro-
cesses but also by revealing and quantifying the complex
interactions between genes, proteins, and metabolites that
compose these systerns.l’2 The analysis and interpretation of
these data pose a great challenge to theoreticians working in
the area of systems biology. Novel analysis and simulation
techniques based on physical and chemical principles are
needed to uncover the design principles of signaling and
regulatory networks. At the mesoscopic level, many different
techniques are used to characterize the activity of these sys-
tems, including inference networks, Boolean maps, differen-
tial equations, and stochastic models, the latter playing a
special role.>™°

Cells live in noisy environments and are subject to con-
stant internal and external fluctuations. To maintain normal
function in the face of these changing conditions, regulatory
networks must possess a certain level of robustness while
retaining enough sensitivity to pick up useful signals from
the noisy background.“’15 When molecular species are
present in low abundances, fluctuations in molecule number
can generate large variability in the cell’s response to an
external or internal signal.lé_18 Such intrinsic fluctuations
have been suggested to play important roles in evolution and
embryonic development.lg’20 Thus, describing and evaluating
the effects of molecular level noise are important problems
in cell modeling.

The chemical master equation describes how the prob-
abilities for the number of molecules of each chemical spe-
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21221 the limit of large particle numbers,

the law of mass action for chemical kinetics is recovered

cies evolve in time.

from the master equation as a set of ordinary differential
equations (ODEs).”* At intermediate particle numbers, the
chemical Langevin equations or the equivalent Fokker—
Planck equation can be derived under quite general
assumptions.ZI’23
important approach for
behavior."*2°

Only in a few special cases can stochastic models be
solved analytically. Therefore, numerical simulations have
been the approach used to analyze and quantitatively explain

The analysis of these equations provides an

characterizing noisy cellular

21,27

many biochemical processes.3’21 The large size of the inter-
action networks determined by new experimental approaches
and the vastly different time scales associated with the bio-
chemical processes that make up the network often necessi-
tate large amounts of computer time and memory. Thus, in
many modeling studies the computational load turns out to
be the bottleneck for fruitful analysis. Consequently, model
reduction and simplification techniques are a necessity.

In physics and chemistry, many techniques have been
developed to treat small amplitude fluctuations or noise with
short correlation times.”"?”*® More recently, considerable
effort has been devoted to accelerating stochastic simula-
tions.> > In this paper, we report on a new reduction
technique for the chemical Langevin equation, which is
widely used in modeling the stochastic behavior of bio-
chemical processes and has been studied extensively in pre-
vious work. The chemical Langevin equations consist of a
deterministic part plus associated noise terms. Its derivation
is based on the assumption that the fluctuations occur on a
much faster time scale than the deterministic motion. Hence,
in the chemical Langevin equation, the noise is taken to be
white because its correlation time is assumed to be negligible
relative to the deterministic time scale.?'" Nevertheless,
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when time scale separations exist in the fluctuations, it may
be necessary to distinguish noise from different sources to
achieve model reduction.

When using ODEs derived from the law of mass
action, 221223940 singular perturbation techniques that take
advantage of separation of time scales can be used to elimi-
nate fast variables that are entrained to the slow variables.
This type of reduction is not directly applicable to Langevin
equations because the noise terms always represent fast mo-
tions and cannot be formally separated into groups with dif-
ferent time scales. Here we propose a practical approach to
achieve the desired simplification that is based on physical
considerations of chemical reactions. For intrinsic fluctua-
tions in chemical reactions, not only the deterministic motion
but also the fluctuations evolve on separate time scales: fast
motions are associated with fast intrinsic noise and slow mo-
tions with slow intrinsic noise. The chemical Langevin equa-
tion masks this distinction. Partial equilibrium assumptions
in the context of the master equation have been widely used
to reduce multiscale systems.30’31’3 >-36.3841 Similarly, in order
to take advantage of separations in time scale within the
Langevin formalism, we first determine the slow degrees of
freedom and assume that the fast variables reach a quasi-
steady state, where an adiabatic steady probability distribu-
tion exists and parametrically evolves with the slow vari-
ables. Chemical Langevin equations are written for the slow
variables in which only averages of fast variables appear and
the noise term comes purely from the slow motion. This
reduction ensures that we only need to simulate the slow
reactions, achieving high computational efficiency. Total
fluctuations, which include the fast noise, may be computed
at any desired time instant from the adiabatic steady state
distribution.

In Sec. II, we use a simple birth-death-dimerization pro-
cess to illustrate our technique. The slow variables are con-
structed and the associated chemical Langevin equation is
derived. Through solution of the steady state dimerization
reaction, the adiabatic probability distribution for the fast
variable is derived containing the slow variable as a param-
eter. In Sec. III, we compare the results from our reduction
with exact Gillespie simulations. Next, a related gene regu-
lation model is introduced in which the dimers act as tran-
scriptional activators for the protein and thus change the pro-
duction rate of the monomers. After a small modification in
the reduction scheme to account for the discrete states of the
promoter, our model shows excellent agreement with the
benchmark computations. In Sec. IV, separation of time scale
and model reduction problems are discussed, and our scheme
is compared with existing methods. In Sec. V, we summarize
our work and point to possible future directions.

Il. FORMULATING THE PROBLEM THROUGH
A SIMPLE DIMERIZATION PROCESS

Consider the following simple dimerization process to
be used later as part of a gene regulatory network,
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(1)

The monomers M are produced at a rate g by a Poisson
process. The monomers dimerize into D with a rate . At the
same time, M and D decay back to their original reactants
with rates k and A, respectively. In the limit of large molecu-
lar abundances, the deterministic evolution of the molecule
numbers evolves according to the following chemical kinetic
equations:

d
—nzﬁm(m— 1) = \n,
dt 2

2

dm

—=2\n—um(m—-1)+g—km,

dt

where n denotes the number of D and m the number of M.
It turns out that the deterministic dynamics given by Eq. (2)
can be simplified by projecting the dynamics onto a slow
manifold*™*® which is a smooth hypersurface of lower di-
mension than the original phase space. However, for stochas-
tic dynamics dictated by the corresponding chemical Lange-
vin equations the reduction is not obvious due to the mixing
of deterministic and stochastic time scales, and therefore
must be done very carefully. Below, we elaborate on such a
reduction technique.

To eliminate the fast variable, it is necessary to define
the variables that correspond to the slow manifold. The total
particle number N=m+2n is a good slow variable®' and sat-
isfies a simpler equation,

dN r 3)

—=g—km.

dt &
However, Eq. (3) is not closed because it contains m, the
monomeric protein number. To close this equation, we need
to find an algebraic relation between m and N. If w,\
> gk, an adiabatic assumption may be made that the dimer-
ization reactions always reach a quasisteady state (i.e.,
dn/dr=0 in the lowest order approximation). Under this as-
sumption, we have the identity

N:m+%m(m—1), (4)

which defines the slow manifold in the phase space of Eq.
(2) and also gives a relation between the time evolution of m
and N,

d 2 “1an
—’”:(Hﬂl) =, (5)
dt A A dt

Substituting Eq. (3) into Eq. (5) results in a closed equation
for m. Thus, we have successfully eliminated the fast vari-
able by utilizing the slow manifold represented by Eq. (4).
Can the same elimination techniques be applied in the
presence of noise? Caution must be exercised because the
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approximation given by Eq. (4) is only valid near the slow
manifold which is determined by the deterministic part of the
equation. Noise coming from the fast dimerization reactions
can potentially drive the solution away from the manifold,
which makes Eq. (4) and thus Eq. (5) inapplicable. With
noise, we have to use a probabilistic description. When all
species are present in large quantities, the chemical Langevin
equations23 accurately generate individual realizations of the
reaction trajectories. In the limit of fast dimerization, the
distribution for the monomers M can be assumed to be in
steady state for each value of the slowly evolving N. Al-
though the monomer number m itself fluctuates rapidly, m,
the average conditioned on N, remains close to the slow
manifold, i.e., Eqs. (4) and (5) are still satisfied with high
accuracy if m is replaced by m. On the other hand, the slow
birth-death reaction effectively only sees the average i,
which leads to the chemical Langevin equation

dN

Rl i kim + \rgF (1) - \'ka‘z(t) (6)

where I',(f), i=1,2, are Gaussian white noise terms with

(Fp=0,(T()[,(t"))=6,(r—1"). Although the noise in Eq. (6)

seems to have zero time correlation, we have to keep in mind

that it is a mathematical abstraction of the stochasticity in-

trinsic to the chemical reactions and it is “slow” compared

with fluctuations from the dimerization process. Substituting

Eq. (5) into Eq. (6) results in

dm 2um @ -l _ —

o (1 T X) (g —km + gl (t) — VkmI',(2)),
(7)

which gives the time evolution of the conditional average m
and includes the slow noise generated in the birth-death pro-
cess. To produce the full stochastic trajectory, we have to
include the “fast” noise generated in the dimerization process
which we assume is in steady state.

We concentrate on the dimerization reaction for fixed N
to study the effects of the fast noise. To obtain an analytic
expression for the steady state probability distribution we use
a generating function formalism, which has been widely used
in describing random process in physics and (:hemistry.21’47’48
The generating function V(x)=X,,P(m)x™, where P(m) de-
notes the probability of having m monomer M, satisfies

v ,u(l_ 2)&2

d
o =2 + = (x—l)(N—x(?—)‘I’, (8)

X
which has the steady state solution
W (x) = C Hepy(V— N px), 9)

where C is a normalization constant to ensure W(1)=1 and
Hey is an Nth order Hermite polynomial:

(_ 1)” —2n
n!2"(N=2n )va

[N/2]
Hey(x) =N! E : (10)

where [N/2] denotes the greatest integer not bigger than
N/2. Thus, explicitly, for even N,
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N/2
xNZn M)n
W) =GN Eon‘(N Zn)‘(Z)\ (1)

which gives the steady probability distribution

&(ﬂ) (12)

P(N -2n) =
(N=2m) = v am1\ax

Using the Sterling approximation

S
n! ~\2mn| —
e

and taking the logarithm of Eq. (12), we have

1
In P(N-2n) ~n lnﬂ —n(lnn-1)-=In2mn
2N 2

—(N-2n)(In(N2n)-1) - %ln 27(N -2n).

(13)

In the limit of large particle numbers, we may use a Gaussian
approximation for the probability distribution and, thus, we
calculate the first and second derivatives of Eq. (13),

din P(N-2n)  p

=In—+2 In(N - 2n)+ -Inn-—,
dn 2\ -2n 2n
(14)
d* In P(N -2n) 2 1 1 4
5 = IR R (15)
dn (N=2n) 2n~ n N-2n

The condition d In P(N-2n)/dn=0 then gives an equation
for the average,

MWN=2n)(N-2n+1)=N2n+1), (16)

to leading order. If we write m=N-2n, then Eq. (16) is al-
most equivalent to Eq. (4). Therefore, the average of the
stationary distribution is well approximated by the determin-
istic result for m, which stays close to the slow manifold. If
we define b=—d? In P(N-2n)/dn?|,_;>0, then we get a
Gaussian approximation of the probability distribution

[b i
P(m) = [ g0 ? (17)

which describes the fast noise distribution conditional on N.
Consequently, the random variable m is well approxi-
mated by

m=nm+ &y, (18)

where &y is a random variable with the distribution given by
Eq. (17). In this way, we achieve the desired reduction. To
get the stochastic trajectory of m(t), we first solve the slow
Langevin equation (7) to get () and hence N(¢) by Eq. (4).
Next, this N(z) is used to generate a random number &y ac-
cording to the probability distribution equation (17) and m(z)
is obtained through Eq. (18). In practice, computational re-
sources can be directed to evolve the slow variable, consid-
ering the full stochasticity of m(z) only when necessary.
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lll. NUMERICAL IMPLEMENTATION AND
COMPARISON WITH THE GILLESPIE ALGORITHM

In this section, we examine the validity of our technique
using two examples. First, we compare the simulation results
from Egs. (7) and (18) with exact discrete stochastic simula-
tions. Next a gene regulatory network is introduced and a
similar reduction is carried out. This example requires a
modification to the reduction method to accommodate the
discrete dynamics of the gene promoter. Numerical solutions
of the simplified model are also compared with discrete sto-
chastic simulations. The Gillespie algorithm3 is used to pro-
duce exact results for both systems. A second-order forward
integration scheme® ™ is invoked to evolve the chemical
Langevin equations. In both simulations we used 4 X 10* tra-
jectories to compute the averages. The probability distribu-
tion functions (PDFs) at particular times and time series for
the average and variance of the monomer number are plot-
ted. As above, we use m to denote the conditional average of
m for fixed N and introduce the angular bracket notation (-)
to denote the overall average of a variable.

A. The birth-death-dimerization problem

To satisfy the fast dimerization condition, we choose g
=0.2, k=0.001, ©£=0.002, and A=30. The initial condition is
(m,n)=(0,0). Figure 1 shows a comparison of the distribu-
tions for M at =200 and =500 obtained from our reduced
Langevin approximation (solid line) and Gillespie simula-
tions (circles), indicating excellent agreement. The reduced
equation captures the characteristic features of the distribu-
tion. Although the figure only shows the distribution at two
specific snapshots, the distributions are in good agreement
throughout the time evolution.

Figure 2 displays the average and the variance of protein
number m in the time interval [0,500]. The reduced equation
produced a result in perfect agreement with the Gillespie
result. Both the average and the variance grow monotoni-
cally with time. One interesting observation is that the aver-
age is approximately equal to the variance, which is a char-
acteristic feature of the Poisson process and can be explained
by Eq. (7). With the current parameter values, the first factor
on the right hand side of Eq. (7) is very close to 1 since
um/N<<1. Thus, to a very good approximation, the condi-
tional average m satisfies a usual birth-death equation which
describes a Poisson process. The dimerization in Eq. (1)
rarely happens in the interval r=[0,500] since (n)=0.2
when (m) =80 at r=500.

B. Positive autoregulation

We now turn to a more complex system involving a
genetic switch.'**®" In addition to the birth-death-
dimerization process, the switch involves a positive feedback
loop in which the dimer form of the protein acts a transcrip-
tional activator by binding to the promoter region of the
gene. As the time scales become even more entangledﬁo’(’2 in
this model, we test the validity of the reduction scheme in
this new context.

The reactions for this system are as follows:*
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P(m)

FIG. 1. Comparison of the m distribution for the two-step cascade at times
(a) t=200 and (b) r=500: Gillespie simulation (circles) and reduced Lange-
vin approximation (solid line). g=0.2, k=0.001, ©=0.002, and \=30 with
the initial condition (m,n)=(0,0).

P)
M—0, (19)
0— M, (20)
A
M+ M=D, (21)
OA
k
Oy +D=0,. (22)
Bk

The above equations describe a simplified version of an
autoregulated gene. The promoter is denoted by O,, where
s €{0, 1} denotes the states of the promoter, unoccupied and
dimer bound, respectively. The constitutive production rate
of the promoter is very small compared to the production
rate of the activated gene when a dimer bounds to the pro-
moter. The transitions in the promoter state are represented
by Eq. (22), where k is the forward rate and S is the dimen-
sionless dissociation constant. For simplicity, we lump the
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FIG. 2. Comparison of the m average and variance computed for the two-
step cascade in the time interval t=[0,500]: Gillespie simulation (circle) and
reduced Langevin approximation (solid line). g=0.2, k=0.001, ©=0.002,
and A=30 with the initial condition (m,n)=(0,0).

transcription step and the translation step into one production
rate (20) with a rate «, that depends on the state of the
promoter. When s=0, «; is small and marks the constitutive
production rate of the monomer; when s=1, «@; is much
larger than «) and represents the active state of the gene. The
protein M decays at a constant rate § in Eq. (19) while it
dimerizes to D at a rate A in Eq. (21). The dissociation rate
is 6A.

This system is more complicated than the previous one
because now the number n of the dimer D affects the pro-
duction rate of the monomer M by binding to the gene pro-
moter. Furthermore, the promoter has only two discrete
states O, and O,, which cannot be approximated by a con-
tinuously varying random number. Thus, the Gaussian noise
approximation is not applicable here, and we have to keep
the original discrete stochastic process to model transitions
in the state of the promoter.

If the dimerization is much faster than other reactions,
we may use the steady state approximation as in the previous
example; specifically,

J. Chem. Phys. 129, 214115 (2008)

7= M i (23)
20
where m and 7 denote the conditional averages of the mono-
mer number m and the dimer number n, respectively, under
the fast reaction (21). Let N=2n+m denote the slow vari-
able; from

77— 1
Neme 2D (24)
0
we derive
dii dN
M+ @m—-1)07, (25)
dt dt

which shows how m changes with N. For the slow variable
N, we may write the corresponding chemical Langevin equa-
tion,
dN r—

Z:—5m+ax—lﬂ1v5r7t+lﬂ2\*’z. (26)
The primary difference between Egs. (6) and (26) is that here
ay is a two-state random variable with a Poisson switching
probability determined by the equations

& =—knPy+ BkPy,
dt
(27)
£lfl:kﬁPo—,BkPl,
dt

where P, and P; denote the probabilities for the state vari-
able s having a value of O or 1.

We use a fixed time-step method to integrate Eq. (26)
and simulate the random switching event of the promoter.
For sufficiently small time step dt, the transition probability
from O, to O, in the time interval dt is knPydt and BkPdt is
the probability for the reverse transition. In each time inter-
val, we fix the promoter state and allow it to change only at
the end of each step according to the transition probability.
As long as dt is much smaller than the average switching
time, this numerical scheme is relatively accurate. Within
each time interval, we used a second-order stochastic inte-
grator to update /i as in the previous example. Based on this
scheme, we carried out simulations with two sets of param-
eter values and calculated the averages, variances, and PDFs.
We also carried out Gillespie simulations with identical pa-
rameters to compare with our reduced system. In the plots
below, the Gillespie results are depicted with open circles
and the chemical Langevin results with solid lines (or dashed
lines). All results consist of averages over 40 000 trajectory
realizations.

Simulation results shown in Fig. 3, were obtained in the
time interval te[0,2000] with parameter values 6=0.01,
ap=0.1, ¢;=1.0, N\=0.2, 6=15, k=0.05, and B=3 and the
initial condition (m’Nqﬁo’Nd)l ,n)=(0,1,0,0). We see that the
evolution of the average and the variance of two different
calculations agree extremely well. The average is a mono-
tonically increasing function of time, saturating at long
times, while the variance shows a fast initial rise to a peak
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FIG. 3. Comparison of (a) the average and (b) the variance of the monomer
M number computed for the gene regulation cascade in the time interval
t=[0,2000]: the Gillespie simulation (circle), the reduced Langevin approxi-
mation (solid line), and without fast noise (dashed line). 6=0.01, a,=0.1,
a;=1.0, \=0.2, 6=15, k=0.05, and B=3 with the initial condition
(m,N¢0,N¢I,n):(O,1,O,O).

and after a small drop starts a second slowly growing stage.
The peak in the variance arises due to the discreteness of the
dimers at the initial stage. The dashed lines in Fig. 3 display
the results for the reduced model without fast noise, i.e., with
only m=m in Eq. (18). The average overlaps with the full
noise approximation as expected while the variance shows
large discrepancies at later times. Initially, dimerization
rarely happens, and thus contributes little to the variance.
After that, however, the monomers dimerize more frequently
and the dimerization process starts to dominate the fluctua-
tions. At rt=2000, taking m=87, we get n=250 by Eq. (23).
According to Egs. (16) and (17), the contribution of the fast
noise to the variance is

4 4

~— =3
b 1/250+4/87

)

which accounts for the difference between the solid and the
dashed line in Fig. 3(b).

J. Chem. Phys. 129, 214115 (2008)
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FIG. 4. Comparison of the autocorrelation function Cor(z,7) at (a) t=400
and (b) r=1000 of the monomer M number computed for the gene regula-
tion cascade: the Gillespie simulation (circle) and the reduced Langevin
approximation (solid line). 6=0.01, «y=0.1, a;=1.0, A=0.2, 6=15, k
=0.05, and B=3 with the initial condition (m,N%,Nd,],n):(O, 1,0,0).

To further demonstrate that the reduced method captures
the dynamic behavior of the full system, in Fig. 4 we com-
pare the temporal autocorrelation function

(m(#) = m) (1)) (m(t + 7) = (m)(t + 7))

01047

Cor(t,7) =

which is a function of two variables ¢ and 7 representing two
time instants 7 and 7+ 7 (where o7 indicates variance at time
t). When the system reaches equilibrium, Cor(z,7) depends
only on the time difference 7. In the transient phase, how-
ever, the correlation function also has a strong dependence
on the variable 7. This is clearly exhibited in Fig. 4(a) for ¢
=400 and Fig. 4(b) for 7=1000. The graphs look similar and
both have a sharp protrusion near 7=0 due to the short deco-
rrelation time. For t=1000 (Fig. 4), the profile becomes more
symmetric around 7=0 than for =400 since the system ap-
proaches equilibrium with increasing time. In both figures,
the reduced method (solid lines) agrees with the Gillespie
result (circles) extremely well.
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FIG. 5. Comparison of (a) the average and (b) the variance of the monomer
M number computed for the gene regulation cascade in the time interval
t€[0,2000]: the Gillespie simulation (circle), the reduced Langevin ap-
proximation (solid line), and without fast noise (dashed line). §=0.02, «,
=0.2, a;=2.0, A\=0.4, 0=50, k=0.001, and B=10 with the initial condition
(m,N¢0,N¢l,n):(0,1,O,O).

Figure 5 shows similar calculations but with a different
set of parameter values, 6=0.02, a;=0.2, a;=2.0, A\=0.4,
6=50, k=0.001, and B=10, where we significantly increased
the backward reaction rate # and dissociation constant 8 but
decreased the promoter switching rate k. The agreement with
Gillespie calculation is still very good, but small discrepan-
cies exist, especially in the variance near the end of the simu-
lation. The average is still a monotonic function, but the
variance displays a broad peak which is very different from
the one depicted in Fig. 3(b). The computation without fast
noise now agrees quite well with the full noise approxima-
tion in both averages and variances. In the current case, the
birth-death fluctuations resulting from switching in the pro-
moter state dominates. The dimerization noise becomes rela-
tively insignificant. Also note the large values of the vari-
ance, which indicate a strong deviation from the Poisson
process. Thus, the dynamics for the two chosen sets of pa-
rameters differ significantly. The PDFs shown below reveal
additional differences.

J. Chem. Phys. 129, 214115 (2008)

0.9
0.8
0.7
T.;: 0.6

0.5

Cor(t

0.4
0.3

0.2

Cor(t,1)

O I I
-1000 -500 0 500 1000
(b) T

FIG. 6. Comparison of the autocorrelation function Cor(z,7) at (a) r=400
and (b) r=1000 of the monomer M number computed for the gene regula-
tion cascade: the Gillespie simulation (circle) and the reduced Langevin
approximation (solid line). 6=0.02, «(=0.2, a;=2.0, A=0.4, 6=50, k
=0.001, and B=10 with the initial condition (m,N(/,O,N(/,l,n)=(O,1 ,0,0).

We compare the time correlation function Cor(¢,7) in
Fig. 6 again for t=400 and #=1000 with the new set of pa-
rameter values. They continue to show the ¢ dependence of
Cor(z,7) out of equilibrium. The profile around the peak in
both (a) and (b) seems to display a cusp at the peak. The
sharp protrusion at the origin in Fig. 4 is not obvious here
because the fast noise is subordinate to the fluctuations in-
duced by the slow changes in the state of the promoter. Still,
the agreement between the reduced method and the exact
Gillespie simulations is nearly perfect, demonstrating that
the temporal dynamics of the original system is very well
captured by the reduced equations.

Figure 7 shows the probability distributions at time ¢
=400 calculated with the two sets of parameter values. Our
reduced Langevin approximation captures the distribution
function very well. In Fig. 7(a), the distribution is close to a
Gaussian centered around m=>50 while in Fig. 7(b) the dis-
tribution has a peak at m=10 plus a broad elevation near
m="70. For both sets of parameters, when s=0, the monomer
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FIG. 7. Comparison of the probability distributions for the gene regulation
cascade at 1=400: the Gillespie simulation (circle), the reduced Langevin
approximation (solid line), and without fast noise (dashed line) for param-
eter values (a) 6=0.01, ay=0.1, @;=1.0, A=0.2, =15, k=0.05, and B=3
and (b) 6=0.02, &y=0.2, ;=2.0, A=0.4, #=50, k=0.001, and B=10, with
the initial condition (m’N%’NoS] ,n)=(0,1,0,0).

number is approximately 10 but is approximately 100 when
s=1. The values of # and B in Fig. 7(a) are considerably
smaller than those in Fig. 7(b); thus, it is a lot easier for the
first system to retain the s=1 state than the second.

We let the two systems further evolve to t=2000 result-
ing in the probability distributions depicted in Fig. 8. Our
reduced model still perfectly matches the exact simulations.
The Gaussian profile of the first distribution is retained but
its center moved to m=90 which means that most of the
trajectories reach the s=1 state. In Fig. 8(b), a large second
peak appears near m=100 while the first peak is considerably
lower when compared to Fig. 7(b). The second peak corre-
sponds to the s=1 state while the trajectories in the first peak
mainly stay at the s=0 state.

The dashed lines in Figs. 7 and 8 depict the results of the
reduced model without fast noise. For the first set of param-
eter values, the PDF profiles are considerably narrower than
the exact ones while there are only small discrepancies for
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FIG. 8. Comparison of the probability distributions for the gene regulation
cascade at r=2000: the Gillespie simulation (circle), the reduced Langevin
approximation (solid line), and without fast noise (dashed line) for param-
eter values (a) 6=0.01, ay=0.1, @;=1.0, A=0.2, 6=15, k=0.05, and B=3
and (b) 5=0.02, ay=0.2, a;=2.0, \=0.4, 6=50, k=0.001, and B=10, with
the initial condition (m,N%,N(,,] ,n)=(0,1,0,0).

the second set of parameter values. In fact, in Fig. 3(b) the
dashed line shows a variance of ofi%7, which is much
smaller than the value produced by a pure birth-death pro-
cess with the corresponding average value (m)=S87. The
dimers act as a reservoir to buffer fluctuations in the mono-
mer number. When monomers decay, some dimers subse-
quently dissociate to keep the monomer number from de-
creasing; when monomers are born, dimers are subsequently
formed to reduce the monomer number. Thus, the dimer res-
ervoir has the effect of damping fluctuations generated in the
birth-death process. Of course, at short time scales, the fluc-
tuations caused by dimerization could be very large. For the
second parameter set, the fluctuations are mainly due to the
slow promoter state switching, so the dashed lines in Figs.
7(b) and 8(b) are closer to the exact profiles.

IV. DISCUSSION

Since the introduction of the Gillespie exact stochastic
simulation algorithm,3 much effort has been devoted to ac-
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celerate its implementation. The first reaction method* was
improved by the next reaction method,” which also is exact
and requires only one random number for each reaction
event. The 7leap method** determines the number of transi-
tions that occur in a fixed time interval with the approxima-
tion that the propensities of all the reactions do not change
significantly during that time. In order to avoid negative pro-
tein numbers in the 7-leap method with large step size, bino-
mial sampling scheme can be invoked.” If all species exist
in large quantities, the chemical Langevin equations provide
a continuous approximation to the underlying discrete pro-
cess. In real reaction networks, however, there often coexist
species with large and small copy numbers, as well as reac-
tions with very different rates. The approximations needed in
these schemes do not hold uniformly across the whole sys-
tem and may not significantly reduce the computation load in
many practical situations. Consequently, further reduction
methods have been developed that partition the species or the
reactions into different groups.7’8’29_38 Fast reactions are as-
sumed to reach partial e:quilibrium30’3 13538 quch that effec-
tive reaction rates for the slow reactions can be estimated
conditional on the averages of the fast variables. Alterna-
tively, if the fast species assume large populations, determin-
istic equations, chemical Langevin equations, or the 7-leap
method”#?3*37 can be used to evolve these species while
the original or slightly modified Gillespie algorithm is used
to advance the slow reactions.

The reduction scheme introduced here is related to the
acceleration schemes mentioned above. Our contribution re-
sides in treating the chemical Langevin equation instead of
the chemical master equation as all the above schemes did.
Therefore, our scheme deals with reaction species with large
population. The chemical Langevin equations are a reduction
in the master equation and the treatment here can be regarded
as a second reduction. It turns out that even with the chemi-
cal Langevin equation, the partial equilibrium assump-
tion® 124 i still applicable as long as the reaction rates
are well separated. In this sense, the current scheme is an
extension of the partition scheme for the master equation.
Many techniques such as the hybrid integration method de-
veloped for the master equation are also applicable here. In
our second example, the promoter switches between two dis-
crete states. We retained this discreteness in our reduced sys-
tem and utilized a simple hybrid scheme. The excellent
agreement of the results from this method with exact
Gillespie simulations convincingly verifies the validity of the
scheme.

In the examples considered here, our reduction scheme
takes only 2% or 3% of the computational time as the exact
Gillespie algorithm, demonstrating considerable efficiency.
The main advantage of the reduction is that it removes the
stiffness® embedded in the chemical Langevin equations.
The fast dimerization process contributes stiff terms to both
the monomer and dimer equations such that very small steps
need to be taken in order to avoid instabilities when integrat-
ing these equations. Our reduction scheme preprocesses the
fast reactions, and thus retains only the slow variables. This
allows for much larger time steps. The increase in the inte-
gration step size is approximately proportional to the ratio of
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the fast and the slow reaction rates to maintain the integra-
tion stability kdf~ 1, where k is a reaction rate and dt is the
integration step size. Note that only a forward integration
scheme® was considered because such methods are the most
popular and convenient schemes for integrating the chemical
Langevin equations.

An interesting question is whether it is possible to incor-
porate the fast reaction distribution equation (17) into the
slow Langevin equation (7) to forge a single Langevin equa-
tion for m. The answer seems to be negative. Equation (7) is
the core of the whole reduction but is only valid for the
conditional average m as we argued in Sec. II. Thus, to write
an equation purely in terms of m, we have to deduce the
average m from the known full random m at each time in-
stant in order to make use of the slow manifold property.
This is impossible without simulating the fast noise which
breaks our original goal of reducing computational load. In
the literature discussed above, the slowest and the fastest
motions including fluctuations are always treated separately.
If there are more than two time scales, the fastest reactions
should reach steady state first, followed by the second fast-
est, and then the remaining reactions. Our reduction scheme
evolves only the slowest set of reactions and is able to se-
quentially generate the distributions of fast variables based
on the values of the slower variables.

V. SUMMARY

In this paper, we proposed a new scheme for performing
model reduction using a separation of time scales in the
chemical Langevin equation. In the reduced model, a Lange-
vin equation is used to advance the slow variables while
assuming the fast variables remain in a quasisteady state. A
stochastic numerical simulation technique is devised to
implement the proposed scheme. Two examples are used to
demonstrate the effectiveness of our method. The first one is
a birth-death-dimerization process and the second is a simple
gene regulation network. In these examples, reactions in-
volved in the dimerization reactions are assumed to be faster
than other processes, and thus represent fast degrees of free-
dom. However, the monomer participates in both the slow
and the fast reactions, thus mixing time scales. We intro-
duced an auxiliary variable to successfully separate reaction
components with different time scales and achieved signifi-
cant computation efficiency in the resulting reduced model.
The approximate solutions agree extremely well with the re-
sults computed from exact Gillespie simulations.

Although more sophisticated integration techniques are
available that would further improve the efficiency of the
current scheme, the main goal here was to demonstrate our
scheme’s validity and usefulness. We chose to use a simple
method to integrate Eq. (26). The time step dt is required to
be much smaller than the average switching time between
promoter states. This restriction can be removed by using
hybrid integration schemes like those employed in treating
the master equation.7’8’33’37 Furthermore, these integration
schemes are able to handle time-dependent noise and may be
used in our reduction technique to treat nonautonomous sys-
tems.
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The reduction scheme has been shown to be very effec-
tive in the two examples in which the network structures are
relatively simple and the slow and fast variables are easy to
identify. In more realistic situations, the cellular network
could be much more complicated and the time scales are
more entangled. Defining slow variables and separating dif-
ferent time scales in a systematic way is essential for the
implementation of the current technique. Furthermore, often
in realistic large-scale networks, there exists a span of time
scales, where there is no clear-cut distinction between the
slow and fast processes. Systematically extending our tech-
nique to model systems with multiple time scales is a chal-
lenging and interesting problem. Recent work by Ball et al.*®
provides a possible avenue for pursuing this problem.
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