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Cellular signaling networks have evolved to cope with intrinsic fluctuations, coming from the small
numbers of constituents, and the environmental noise. Stochastic chemical kinetics equations
govern the way biochemical networks process noisy signals. The essential difficulty associated with
the master equation approach to solving the stochastic chemical kinetics problem is the enormous
number of ordinary differential equations involved. In this work, we show how to achieve
tremendous reduction in the dimensionality of specific reaction cascade dynamics by solving
variationally an equivalent quantum field theoretic formulation of stochastic chemical kinetics. The
present formulation avoids cumbersome commutator computations in the derivation of evolution
equations, making the physical significance of the variational method more transparent. We propose
novel time-dependent basis functions which work well over a wide range of rate parameters. We
apply the new basis functions to describe stochastic signaling in several enzymatic cascades and
compare the results so obtained with those from alternative solution techniques. The variational
Ansatz gives probability distributions that agree well with the exact ones, even when fluctuations are
large and discreteness and nonlinearity are important. A numerical implementation of our technique
is many orders of magnitude more efficient computationally compared with the traditional Monte
Carlo simulation algorithms or the Langevin simulations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2353835�
I. INTRODUCTION

The life of the cell is regulated by intricate chains of
chemical reactions.1 The whole cell may be viewed as a
computing device where information is received, relayed,
and processed.2 Signal transduction cascades based on pro-
tein interactions regulate cell movement, metabolism, and
division.1,3 Since cells are mesoscopic objects, understanding
the role of the intrinsic fluctuations of the biochemical reac-
tions as well as environmental fluctuations is a fundamental
part of understanding signaling dynamics.4–15 In this regard,
the well-organized behavior of cells, which emerges as a
result of biochemical reaction dynamics involving hundreds
of cross-linked signaling pathways, is remarkable.16–22 The
problem of how signals can be precisely detected, smoothly
transduced, and reliably processed under noisy conditions is
a research topic of great current interest that, in turn, should
lead to deeper understanding of the origins of the cell’s func-
tional responses.23,24 Furthermore, these studies can help un-
ravel the design principles for various signaling pathways,
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leading, eventually, to better ways to control and efficiently
interfere with cellular activity, as would be needed to correct
the behavior of diseased cells.18,25

The role of noise in gene regulatory networks has been
identified as a key issue and has been intensively studied in
recent years.10–12,26–31 Linearization of the noise may be ac-
ceptable if the dynamics near steady states is being
studied.10,26,31 When protein numbers are large and, thus, the
continuous approximation is valid, time-dependent distribu-
tions have been determined using the Langevin or Fokker-
Planck equations.6,32,33 To account for the discreteness in the
linearized equations, the generating function approach has
also been used.10,26 A variational treatment of steady state
stability and switching in nonlinear, discrete gene regulatory
processes has been reported.29,30

In cytosolic signal transduction processes, in contrast to
gene transcription which involves a unique DNA molecule,
all the reacting species are present in multiple copies and
participate in unary, binary, or perhaps even higher order
reactions. Noise could be multiplicative34,35 and the linear
description easily breaks down. Moreover, cellular reactions
usually take place heterogeneously in space. The localization

and compartmentalization of protein organelles require dif-
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fusive or active transportation of reacting molecules from
one region to another. Spatial coordination combined with
temporal coordination generates coherent, yet complex spa-
tiotemporal patterns.18–22,36–38

The extracellular ligands often trigger cascades of
chemical reactions which propagate inside a cell and induce
responses from various environmental cues. The cell body is
a highly heterogeneous entity and never settles to a steady
state. To understand cell dynamical processes, an explicitly
time-dependent description is required. Within a volume
with linear dimensions of the Kuramoto length,34,39 diffusion
mixes the reagents in a nearly uniform manner. If the reac-
tions are considered in the Kuramoto volume, it is reasonable
to neglect the spatial heterogeneity. For many signal trans-
duction networks, however, it is likely that only a few pro-
teins are present in the Kuramoto volume �determined by
specific reaction and diffusion rates�, and therefore, the con-
tinuous description of protein numbers breaks down. To
characterize stochastic signaling reactions in this volume, a
time-dependent description of a noisy, discrete, nonlinear
system is required.40 In many situations, such as Drosophila
oogenesis, the exact shape of the probability distribution pro-
file is very important and determines different developmental
paths.38,41 In the following, we discuss efficient techniques to
compute the time-dependent protein number probability dis-
tributions in biochemical reaction networks when the number
of protein copies is small.

The Gillespie algorithm provides an effective Monte
Carlo technique for simulating stochastic chemical
reactions.42–44 Each simulation gives a reaction trajectory
which is close to the deterministic trajectory in the large
particle number limit. To get well-converged statistics, many
trajectories may be needed, often on the order of 105. If there
is a separation of time scales of the constituent chemical
reactions, Gillespie simulations also become exceedingly
slow since the reaction events are dominated by the fastest
reactions while the observables typically involve the slowest
reactions. Although considerable progress has been made in
accelerating such simulations,6,32,33,45 computational ineffi-
ciency continues to be an impediment, especially for the spa-
tially inhomogeneous generalization of the Gillespie algo-
rithm. Furthermore, it is hard to extract the analytical
structure of the solution from the numerical results, which
can be important for achieving a deeper physical understand-
ing of the system behavior when the rate parameters are
widely varied.

Mathematically, a stochastic process may be completely
characterized by a master equation—a group of ordinary dif-
ferential equations �ODEs� describing the evolution of
probabilities.34,46 The main difficulty in solving a chemical
master equation is the enormous number of ODEs involved
even for a small reaction cascade. A number of analytical
techniques have been developed for solving approximately
the master equation.10,26,28 In this work, we show how to
achieve enormous reduction in the dimensionality of specific
reaction cascade dynamics by solving variationally the quan-
tum field theory �QFT� equations of stochastic chemical
kinetics.47–51 Our present approach is based on mapping the

master equation ODEs into a single partial differential equa-
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tion �PDE� and applying a variational technique which re-
duces the PDE into a small number of ODEs. The variational
QFT approach has been employed to study steady state sta-
bility and switching in gene regulatory networks.29,30 In this
work we propose novel time-dependent basis functions ap-
propriate for describing protein signaling cascades which
work in a wide range of rate parameters. Our method gives
probability distributions that agree well with the exact ones,
including when the fluctuations are large and discreteness
and nonlinearity play important roles.

The paper is organized as follows. In Sec. II, the QFT
formulation of the stochastic processes describing chemical
reactions29,30,47,50–52 and the variational solution technique of
Eyink and Alexander and Eyink for solving such field
theories53,54 are presented. We show that the QFT formula-
tion is equivalent to a generating function approach and also
discuss the physical significance of the variational principle
in this context. In Sec. III, we apply the new trial functions
and the variational technique to a number of two-step, three-
step, and four-step enzymatic reaction cascades and compare
our results with those found with more traditional methods.
We also discuss the more general principles of basis function
construction and the limitations of variational approaches.
Finally, we provide in the Appendix a pedagogical treatment
of a simple binding process to further elucidate the details of
the variational approach.

II. QUANTUM FIELD THEORY FORMULATION,
VARIATIONAL PRINCIPLE, AND GENERATING
FUNCTIONS

In this section, we first discuss briefly the master equa-
tion and demonstrate its application to a two-step signal am-
plification cascade. Next, the master equation is recast into a
QFT form in which the probability evolution is governed by
a “wave equation.” Then, we show that the field theoretic
formulation is equivalent to a generating function approach.
To solve these equations, the variational technique of Eyink
and Alexander and Eyink and its physical significance are
examined. We further explore the practical implementation
issues in Sec. III A.

A. The master equation and its solution

Unlike a stochastic simulation which produces an indi-
vidual random trajectory and generates statistics only after a
large number of samplings, master equations directly de-
scribe the evolution of probability distributions in the state
space of a system based on specific interstate transition rates.
For a discrete system, the master equation consists of a set of
ODEs �see the following examples�, while for a continuous
system it becomes an integrodifferential equation such as the
Boltzmann equation. Although the master equation is a com-
plete description of a Markovian system, its solution is usu-
ally difficult and requires special techniques. This paper pre-
sents one variational technique that could be used.

As an example, let us consider the following set of equa-
tions that represents the simplest enzymatic signal amplifica-
tion process �Fig. 1�. In this simple reaction scheme, without

feedback loops, R represents an inactive receptor, which be-
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comes activated into R* upon binding of an external ligand
�stimulus�. When the receptor is activated, it acts as an en-
zyme, catalyzing the phosphorylation of the next kinase
downstream �A+R*→A*+R*� with a rate �. A* spontane-
ously decays to A with a rate � and R* to R with a rate k. In
the absence of R*, A→A* may occur naturally, however,
with a much lower rate, so that it can be ignored when we
introduce the catalyst R*.

Although the R* reaction is unary and independent of the
A reaction, the latter one is binary, making the system non-
linear, thus, different from those considered in a number of
prior works on the gene regulatory networks.10,11,26,27 To
write the master equation, we denote by P�m ,n� the prob-
ability of having m R*’s and n A’s, then

dP

dt
�m,n� = ��− mmP�m,n� + m�n + 1�P�m,n + 1��

+ ��− �N − n�P�m,n� + �N − n + 1�P�m,n − 1��

+ g�− P�m,n� + P�m − 1,n��

+ k�− mP�m,n� + �m + 1�P�m + 1,n�� , �1�

where N is the total number of A and A*. In Eq. �1�, the first
two terms describe the A−A* reaction and the rest the R
−R* reaction. This simple two-step cascade is commonly
found embedded in the onset of a reaction pathway of many
important signaling cascades.55,56 If a large number of inac-
tive receptors R are present the rate of conversion depends
on the arrival times of the external cue and the reaction be-
comes Poissonian. We assume that this is the case in all the
following calculations. If the R→R* reaction is the usual
birth-death problem, our formalism still applies with only
minor changes. The master equation �1� actually contains
infinitely many coupled ODEs.

B. The QFT formulation

The differential-difference equations, such as Eq. �1�, are
well represented in the QFT formulation by introducing cre-
ation and annihilation operators a, a† and states �n�.29,30,47–51

In analogy to quantum mechanics, the operators satisfy the
commutation relation that

�a,a†� = 1.

As usual, the “vacuum state” �0� and its conjugate �0� are
defined to satisfy

�0�a† = a�0� = 0, �0�0� = 1.

Other states are built up from the vacuum state, such as the

FIG. 1. An inactive receptor R, when activated by a signal, activates down-
stream protein A.
n-particle state �n�,
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�n� = a†n�0� .

It is easy to check with the help of the commutation relation

a�n� = n�n − 1�, a†�n� = �n + 1�, a†a�n� = n�n� .

Hence, a†a is the “particle number operator.” Notice that the
states �n� are not normalized in the usual sense since

�n�n� = �0�an�n� = n!,

but they are orthogonal,

�m�n� = �0�am�n� = 0 for m � n .

The state that corresponds to a probability distribution P�n�
is

��� = �
n

P�n��n� .

The probabilities are thus encoded into the coefficients of
different particle number states superimposed into the “wave
function” ���. In order to compute physical observables, the
harvesting state ���= �0�ea is introduced. It is easy to check
that

���n� = 1, ����� = 1, ����a†a�m��� = �nm� .

The first equation shows the particular normalization of an
n-particle state. The second equation corresponds to the
probability conservation �nP�n�=1. The third equation may
be used to calculate the mth moment of the particle number.
The evolution of probabilities is governed by a wave equa-
tion for �:

d���
dt

= ���� . �2�

The original large sets of ODEs are now compacted into just
one equation. Applied to the two-step cascade �Fig. 1�, Eq.
�2� is characterized by the following operator �:

� = �1 − a†���b†ba − �N + �a†a� + g�b† − 1�

+ k�b − b†b� , �3�

where b† ,b are the creation and annihilation operators asso-
ciated with R* and a†, a with A. In this case,

��� = �
m,n

P�m,n��m,n� ,

where

�m,n� = a†mb†n�0� .

Equation �3� is readily verified by substituting into Eq. �2�
and comparing the coefficients of each �m ,n�-particle state.
In contrast to ordinary quantum mechanics, the operator � is
non-Hermitian, so the inner products between the states are
not conserved. This was the reason in introducing earlier the
harvesting state. Nevertheless, many QFT techniques may be
profitably applied, albeit with some
modifications.29,30,48,50,57–59 We will not discuss those and in-
stead will translate the above field theoretic formulation to

the familiar differential equation language.
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C. Differential operators and the generating function

In the field theoretic form, the computations are carried
out by commutator manipulations that sometimes are awk-
ward. Fortunately, it turns out that we may convert the op-
erator equation �2� into a PDE. To accomplish that, we ex-
plore the analogy between a, a† and d /dx ,x. Not only do
they have the same commutator

�a,a†� = 1 ⇔ 	 d

dx
,x
 = 1,

but a more comprehensive correspondence is found:

aa†�0� = �0� ⇔
d

dx
x = 1,

a�0� = 0 ⇔
d

dx
1 = 0,

aa†n�0� = na†n−1�0� ⇔
d

dx
xn = nxn−1,

ama†n�0� =
n!

m!
a†a−m�0� ⇔ � d

dx
�m

xn =
n!

m!
xn−m

for n � m .

From these, we can also deduce for any smooth function f
that

af�a†��0� ⇔
d

dx
f�x� ,

amf�a†��0� ⇔ � d

dx
�m

f�x� .

The analogy ���=�nP�n�a†n�0�⇔��x�=�nP�n�xn converts
a wave function to a generating function. The inner product
with the harvesting state corresponds to evaluation at x=1. It
is easy to check the following relations:

�0�ea��� = ��1� ,

�0�eaf�a†���� = f�1���1� ,

as ed/dxf�x� = f�x + 1� .

The wave equation �2� becomes then a PDE for the generat-
ing function after all the necessary conversions are done. For
the two-step cascade, this expression is

��

�t
= �1 − x���y

�2

�x�y
− �N + �x

�

�x
��

+ g�y − 1�� − k�y − 1�
��

�y
, �4�

where the first term describes the A−A* reaction and the rest
the R−R* reaction. Generating functions were previously
used to treat unary reactions in the gene regulatory
network.10,60 The second order derivative term �2� /�x�y in
Eq. �4� is characteristic of a binary reaction, indicative of

nonlinear kinetics. This higher derivative changes the order
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of the PDE and adds significant difficulty to solving Eq. �4�.
In the generating function formalism, the equation ��1�=1
encodes the conservation of probability and the first two mo-
ments are given by

�n� = ��

�x


x=1
,

�n2� =� �2�

�x2 +
��

�x
�

x=1
, �5�

where � �x=1 means evaluation at x=1. Therefore, the mo-
ments are obtained when the generating function is expanded
at x=1, while the probability distribution is obtained from
the Taylor coefficients when the generating function � is
expanded at x=0.

D. The variational solution

In the QFT formulation of the stochastic processes, a
variational principle may be derived which is equivalent to
the evolution equation �2�. This principle indicates that the
physical solution of Eq. �2� is given by the stationary points
of the following functional:29,30,53

H��L,�R� = �
0

�

dt��L��t − ���R� , �6�

where �L and �R are arbitrary quantum states under quite
general constraints consistent with the positivity of probabili-
ties and the fixed boundary conditions. In practice, we take a
finite-dimensional subset of the infinite-dimensional function
space and apply the variational principle in this subspace to
get closed equations that may be subsequently solved by
simple numerical calculation. If the essential qualitative
properties of the system are known, good approximations of
the original problem can be achieved through an informed
choice of time-dependent basis functions that define the rel-
evant subset in the function space.

Because � is not Hermitian, the right and left eigenvec-
tors are different. To characterize the system, we, therefore,
need two sets of vectors �L and �R. The stationary variation
condition for �L restores the original equation �2� and that
for �R defines an equation satisfied by �L. If we view the
operator �t−� as a large matrix parametrized by t, the �L

and �R generated by the stationary variation condition cor-
respond to its singular vectors61,62 and the extremum values
of Eq. �6� are the singular values. Physically, from the
Schrödinger picture point of view, �R is the evolving quan-
tum state and �L represents the measurable quantities in
which we are interested. Equation �6� serves to find the most
significant state and physical observables. Alexander and
Eyink originally applied this variational principle to Fokker-
Planck equations.54 Subsequently, Sasai and Wolynes used
this variational approach in the field theoretic form and ob-
tained moments in a toggle-switch gene regulatory
problem.29 In this paper, we show how the variational prin-
ciple may be applied, instead, to the generating functions.
We introduce novel basis functions to obtain the time-
dependent probability distributions in signal transduction

cascades. Another novelty of the present formulation is our
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avoidance of cumbersome commutator computations in the
derivation of the evolution equations, making the physical
significance of the variational method more transparent.

There are many ways to choose the time-dependent basis
functions. We follow the approach of Sasai and Wolynes:29

��R� = �R�a†,�f i�t��i=1
n ��0� , �7�

��L� = �0�exp�a��1 + �
i=1

m

ci�t�ai� , �8�

where n is the number of unknown functions in ��R� and m
is the number of parameters in Eq. �8�. The exponential fac-
tor in ��L� acting on �0� gives the harvesting state. If we
substitute this “Ansatz” into Eq. �6� and carry out the varia-
tions with respect to ci, a finite set of ODEs for the evolution
of �f i�t�� is obtained, which then determines the evolution of
the probability distribution.

As mentioned, the variational method can also be recast
into the generating function language using the conversion
scheme discussed previously. Now �L becomes a differential
operator and �R a guess function of variable x. For example,
Eqs. �7� and �8� correspond to

�R = �R�x,�f i�t��� ,

�L = 1 + �
i=1

m

ci�t�
di

dxi . �9�

The function H simply becomes

H = �
0

�

dt�L��t − ����R�x=1. �10�

In the new picture, we have much simpler mathematical op-
erations, e.g., the variational principle becomes simply a
function extremization condition,

 	H

	ci�t�


�cj�t� = 0�j
m,x=1
= 0 for i = 1,2, . . . ,m �11�

or equivalently

di

dxi ���t − ���R�x=1 = 0 for i = 1,2, . . . ,m . �12�

The evolution of the generating function should always con-
serve the total probability. As in Eq. �4�, the total probability
��1,1� does not change with time. The proper choice of �R

should also guarantee this invariance, satisfying
��t−����R�x=1=0. Now, Eq. �12� tells us that the higher de-
rivatives of the expression ��t−���R evaluated at x=1 are
also zero. Therefore, in the limit of m→�, Eq. �12� leads to
the PDE �t�R=��R. For finite m, this PDE is approxi-
mately satisfied in the neighborhood of x=1.

III. NUMERICAL APPLICATIONS

In this part, we discuss the implementation of the PDE
version of the variational method and apply it to several
simple, yet important enzymatic cascades. Before proceeding

to the individual examples, we emphasize our motivation for
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selecting the time-dependent basis functions. We also briefly
discuss several alternative methods also used to solve the
master equation.

A. Computational details

It is reasonable to require the following constraints on
the right basis function �R�x ,y�.

�1� The total probability should be equal to 1, i.e.,
�R�1,1�=1.

�2� The probability should be positive, i.e., the coefficients
of the Taylor expansion of �R around �x ,y�= �0,0�
should be non-negative.

�3� The time rate of the unknown functions, ḟ i�t�, should be
obtainable by solving Eq. �12� derived from the varia-
tional principle.

In the following, we introduce two sets of basis func-
tions. One set is simple but is of limited applicability, while
the other is in a more complex integral form and can be
applied very generally.

We use simple left basis functions, �L�x ,y�. As sug-
gested in Eq. �11�, they are represented by differential opera-
tors and can be easily extended to multivariate cases. For the
two-step cascade, we use

�L,1 = 1 + c1�x + c2�y , �13�

with a simple right basis function �see Eq. �18� below�, and

�L,2 = �L,1 + c3�yy , �14�

with a more complicated right basis �see Eq. �21� below�.
For the three-step cascade discussed below, we use

�L,3 = �L,2 + c4�z + c5�zz. �15�

Following a similar pattern, we can simply write the left
basis function for the four-step cascade discussed below as

�L,4 = �L,3 + c6�w + c7�ww. �16�

In all the above equations, �x ,�xx denote the first and second
derivatives with respect to x, and so on. Other choices of the
left basis function are, of course, possible. The current choice
is simple and gave the best results among different basis
functions which we tried. MAPLE symbolic software was
used to derive the time evolution equations and, subse-
quently, MATLAB numerical software was used to carry out
the evolution of equations of motion and for plotting the
computation results.

To validate our calculations, we used the Gillespie
simulation5,42–44 results as the reference �exact� solutions.
105 stochastic trajectories were sampled to derive the distri-
butions and other statistical quantities. At the same time, the
variational method was also compared with two commonly
used methods—the Langevin equation34 and the �
expansion.34,63–65 In the Langevin equation simulation, we
also used 105 realizations. In addition, to prevent the appear-
ance of negative particle numbers, we applied the selection

66
procedure commonly used. It is awkward and time con-
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suming to use the �-expansion method to compute the dis-
tributions. We only applied it to the simplest two-step cas-
cade.

B. Application to a two-step amplification cascade

In a previous paper,40 approximate analytical solutions
for �4� in certain parameter range were obtained using the
method of characteristics. If the initial conditions correspond
to zero R*’s and N A’s, then a generating function solution
reads

��x,y� = 	1 + � �

� + �m�t�
+

�m�t�
� + �m�t�

e−��+�m�t��t��y − 1�
W

�exp�m�t��x − 1�� , �17�

where m�t�= �g /k��1−e−kt� is the average number of R* at
time t. We make use of this specific functional form and try
the following Ansatz:

�R = �1 + f2�t��y − 1��Ne�x−1�f1�t�. �18�

This results in the following two-dimensional �2D� ODEs:

ḟ1 = g − kf1,

�19�
ḟ2 = ��1 − f2� − �f1f2.

These equations have a particularly simple physical
explanation—they correspond to the deterministic chemical
kinetics equations since f1 and N� f2 are equal to the average
numbers of R* and A, respectively. But now, we may obtain
probability distributions through Eq. �18�. For example, the
variance of A can be easily calculated as �2= �n2�− �n�2

= f2�t�− f2
2�t�.

These ODEs can be solved exactly and we show in Fig.
2 the probability distribution of A* at t=30 for two sets of
parameter values. Also shown in the figure are results ob-
tained from calculations using more traditional techniques.
The first set of reaction rate parameters was chosen as g
=10, k=5, �=0.02, and �=0.15, with the initial conditions
�NR ,NR* ,NA ,NA*�= �20,0 ,5 ,0�. Since the R−R* reaction is
much faster than the A−A* reaction, one expects Eq. �17� to
be a good approximation.40 Indeed, in Fig. 2�a�, the varia-
tional Ansatz Eq. �18� leads to a result that overlaps signifi-

FIG. 2. Comparison of the computed distributions for NA* at t=30 for the
two-step cascade: Gillespie simulation �circles�, one-term basis �dash dotted
line�, integral form basis �solid line�, � expansion �dotted line�, and Lange-
vin equation �dashed line�. �a� g=10, k=5, �=0.02, and �=0.15 with initial
conditions �NR ,NR* ,NA ,NA*�= �20,0 ,5 ,0� and �b� g=0.2, k=0.1, �=0.02,
and �=0.15 with �NR ,NR* ,NA ,NA*�= �20,0 ,20,0�.
cantly better with the exact Gillespie calculation, compared
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with the results from the � expansion and the Langevin
equation. The �-expansion result turns out to be more con-
centrated than the exact result, while the Langevin equation
does not work well near the left boundary, shifting the aver-
age to the right.

For other parameter values, as long as the R−R* reaction
is fast, the Ansatz Eq. �18� works fine as expected.40 How-
ever, if the first reaction is considerably slower than the sec-
ond one, this Ansatz becomes less useful, as shown in Fig.
2�b� for g=0.2, k=0.1, �=0.02, and �=0.15, with
�NR ,NR* ,NA ,NA*�= �20,0 ,20,0�. The variational result gives
a too narrow distribution. The Langevin equation is still not
accurate on the left boundary, the average being shifted to
the right.

In general, the Ansatz �18� tends to generate a distribu-
tion narrower than the exact one, which is also shown in Fig.
4�b�. This can be explained as follows. The Ansatz �18� is a
product of functions of x and y and hence only the average
particle number f1 appears in the second equation of �19�.
Therefore, the fluctuation generated in the R−R* reaction is
absent in the treatment of the A−A* reaction. Physically, if
the first reaction is fast, then the second reaction only “sees”
an average number of R*, with its fluctuation averaged out,
and the Ansatz �18� produces accurate results �Fig. 2�a��. If
the first reaction is slow, however, then the fluctuations in the
number of R* strongly influence the A−A* reaction and the
mere average f1 is not capable of passing this information.
The distribution computed from Ansatz �18� only accounts
for the internal fluctuation of the A−A* reaction and hence
has a narrower profile than the exact result. On the other
hand, despite the apparent simplicity, this Ansatz allows one
to estimate fluctuations in a reaction network in a semiquan-
titative way, with an extremely low computational cost, simi-
lar to solving the ordinary deterministic kinetics equations.

It is straightforward to generalize Ansatz �18� to longer
cascades. For example, for the three-step cascades consid-
ered next, we may write the right Ansatz as

�R = �1 + f3�t��z − 1��N2�1 + f2�t��y − 1��Nef1�t��x−1�. �20�

The resulting ODEs for f i�t�’s are similar to Eq. �19� and
have a physical interpretation related to the chemical kinetics
equations, as discussed above.

To get more accurate results, we have to convolute the
number fluctuation of R* with the number fluctuation of A.
Since the Ansatz based on simple separation of variables
does not work, we need an equation in which x ,y are explic-
itly entangled. To facilitate the computation, we use the fol-
lowing integral form representation:

�R�x,y� = �
−�

�

ds
e−s2

�
�1 + f2�t�e−�s − f3�t��2

�y − 1�

+ f1�t��x − 1��N, �21�

where f1�t� is related to the R−R* reaction and f2�t� and f3�t�
are related to the A−A* reaction. Note that �R�1,1�=1. For

*
y=1, we get the expected generating function for R ,
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�R�x,1� = �1 + f1�t��x − 1��N � eNf1�t��x−1�, �22�

the above approximation being valid when f1�t� is small,
which is true in all simulations below. We could have used

e−s2

�
�1 + f2�t�e−�s − f3�t��2

�y − 1��N exp��s − f1�t��2�x − 1��

in the integrand of �21� to achieve a larger range of f1. But
when the number of R* is small, Ansatz �21� produces better
results, probably due to its more convoluted form.

Now we can control both the average and the variance of
A by manipulating f2�t� and f3�t�. Roughly speaking, f2�t�
controls the average and f3�t� controls the variance. For the
same parameter set shown in Fig. 2�b�, we did the computa-
tion by using Ansatz Eq. �21� and displayed the result in the
same figure �solid line�. It matches closely with the exact
result, better than all other computations.

To show the effectiveness of the Ansatz �21�, we use it to
do one more computation with g=2, k=1, �=0.02, �=0.15,
and the initial conditions �NR ,NR* ,NA ,NA*�= �20,0 ,100,0�.
In Fig. 3, the distributions of A* are displayed at t=6 and t
=30. Although, the result from Ansatz �21� is slightly nar-
rower than the Gillespie computation, they match very well
both at t=6 and at t=30. Actually, this is true for all times as
can be seen in Fig. 4 where the time evolution of the average
and the variance are depicted. In Figs. 3 and 4, the average of
A* from Langevin equation is always greater than the exact
result as explained before, although the variance is computed
accurately. Curiously, the average from the � expansion is

FIG. 3. Comparison of the computed distributions for NA* at t=6 and t
=30 for the two-step cascade: Gillespie simulation �circles�, integral form
basis �solid line�, � expansion �dotted line�, and Langevin equation �dashed
line�. g=2, k=1, �=0.02, and �=0.15 with initial conditions
�NR ,NR* ,NA ,NA*�= �20,0 ,100,0�.

FIG. 4. Comparison of the NA* average and variance computed for the
two-step cascade in the time interval t= �0,30�: Gillespie simulation
�circles�, one-term basis �dash dotted line�, integral form basis �solid line�,
� expansion �dotted line�, and Langevin equation �dashed line�. g=2, k
=1, �=0.02, and �=0.15 with initial conditions �NR ,NR* ,NA ,NA*�

= �20,0 ,100,0�.
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smaller initially but later grows larger than the exact one. We
also plotted the computation results from Eq. �18�. It gives a
smaller variance even though the average is quite accurate.
In this case, the R* fluctuation is important.

C. Application to a three-step amplification cascade

It is not hard to write Ansätze similar to Eq. �21� for
longer or more complicated cascades. In this section, we
demonstrate the use of the variational method for a three-step
cascade with and without feedback loop. In the next section,
we will write the equation for a four-step cascade.

Assume that A* catalyzes a subsequent enzyme
activation/deactivation reaction B�B* with a forward rate
�2 and a backward decay rate �2. The total number N2 of B
and B* is a constant during the reaction. Following similar
procedures as before, we found that the generating function
��x ,y ,z� satisfies

��

�t
= �1 − z��− �2y

�2

�y�z
− �2N2 + ��2z + �2N�

�

�z
��

+ �1 − y���x
�2

�x�y
− �N + �y

�

�y
��

+ g�x − 1�� − k�x − 1�
��

�x
, �23�

where the first term describes the B−B* reaction. The Ansatz
similar to Eq. �21� reads

�R�x,y,z� = �
−�

�

ds
e−s2

�
�1 + f4�t�e−�s − f3�t��2

�z − 1��N2

��1 + f2�t�e−�s − f3�t��2
�y − 1� + f1�t��x − 1��N,

�24�

where f4�t� and f5�t� describe the B−B* reaction. The calcu-
lation results from this Ansatz are shown in Figs. 5�a�, 6�a�,
and 7�a�.

Shown in Fig. 5�a� is the B* distribution computed from
different methods. Ansatz �25� computation matches very
well with the exact solution while the Langevin profile is
shifted to the right. On the left boundary, both Ansatz �25�
and Langevin equation approach zero while the exact solu-

FIG. 5. Comparison of the computed distributions for NB* at t=60 for the
three-step cascade without �a� and with �b� negative feedback: Gillespie
simulation �circles�, integral form basis �solid line�, and Langevin equation
�dashed line�. g=0.2, k=0.1, �=0.02, �=0.15, �2=0.01, �2=0.07,
and �3=0.01 with initial conditions �NR ,NR* ,NA ,NA* ,NB ,NB*�
= �20,0 ,20,0 ,30,0�.
tion has a finite value there. Interestingly, the variance shows
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a maximum value during the evolution as displayed in Fig.
7�a�. The computation from Ansatz �25� captures this nonmo-
notonous behavior accurately which is not obvious at all in
the Langevin computation.

Next, we consider a three-step signaling cascade with a
feedback loop. For example, we can imagine a reaction in
which B* turns off the R* signaling, by catalyzing the R*

→R decay at a rate �3 �Fig. 8�. Mathematically, this corre-
sponds to adding an extra term

�3�1 − y��N2��/�x − z�2�/�x�z�

to the right hand side of PDE �23�. We may still use the same
right Ansatz �25� and the results are displayed in Figs. 5�b�,
6�b�, and 7�b�. Surprisingly, despite the time scale mixing
and nonlinearity, the variational computation matches even
better with the exact result than without feedback �compare
Figs. 5�a� and 5�b��. The relative shift of the average com-
puted from the Langevin equation increases. The maximum
in the variance still exists but its height decreases with the
variance itself. In this case, it seems that the negative feed-
back sharpens the signal.

D. Application to a four-step amplification cascade

Our last demonstration of the variational method is con-
cerned with a four-step cascade. We append a further enzy-
matic reaction C�C* to our three-step cascade without
feedback. In this reaction, the protein C is switched on with
a rate �3 by B* and decays at a rate �3. Again, the total

FIG. 7. Comparison of the NB* variance computed for the three-step cascade
without �a� and with �b� negative feedback in the time interval t= �0,60�:
Gillespie simulation �circles�, integral form basis �solid line�, and Langevin
equation �dashed line�. g=0.2, k=0.1, �=0.02, �=0.15, �2=0.01, �2

=0.07, and �3=0.01 with initial conditions �NR ,NR* ,NA ,NA* ,NB ,NB*�

FIG. 6. Comparison of the NB* average computed for the three-step cascade
without �a� and with �b� negative feedback in the time interval t= �0,60�:
Gillespie simulation �circles�, integral form basis �solid line�, and Langevin
equation �dashed line�. g=0.2, k=0.1, �=0.02, �=0.15, �2=0.01, �2

=0.07, and �3=0.01 with initial conditions �NR ,NR* ,NA ,NA* ,NB ,NB*�
= �20,0 ,20,0 ,30,0�.
= �20,0 ,20,0 ,30,0�.
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number N3 of C and C* is a constant during the reaction.
Routinely, we add the corresponding extra term

�1 − w��− �3z
�2

�z�w
− �3N3 + ��3w + �3N2�

�

�w
��

to the right hand side of Eq. �23�. The right Ansatz is also
postulated following the previous pattern,

�R�x,y,z,w� = �
−�

�

ds
e−s2

�
�1 + f6�t�e−�s − f7�t��2

�w − 1��N3

��1 + f4�t�e−�s − f5�t��2
�z − 1��N2

��1 + f2�t�e−�s − f3�t��2
�y − 1� + f1�t��x − 1��N,

�25�

where f6�t� and f7�t� describe the C−C* reaction. The com-
putations for a particular set of parameters were carried out
and the results are depicted in Figs. 9 and 10.

In Fig. 9, the distributions of C* at t=100 from different
calculations agree with each other very well. The variational
profile is slightly narrower than the exact one but the aver-
ages overlap at all times �see Fig. 10�a��. Now, the maximum
in the variance becomes more pronounced. Even the Lange-
vin computation clearly displays this feature in Fig. 10�b�
though its peak is considerably smaller than the exact one.

FIG. 8. An inactive receptor R, when activated by a signal, activates down-
stream protein A, which in turn activates protein B. In a negative feedback
loop, B downregulates the R activation.

FIG. 9. Comparison of the computed distributions for NC* at t=100 for the
four-step cascade: Gillespie simulation �circles�, integral form basis �solid
line�, and Langevin equation �dashed line�. g=0.2, k=0.1, �=0.02, �
=0.15, �2=0.01, �2=0.07, �3=0.005, and �3=0.05 with initial conditions

�NR ,NR* ,NA ,NA* ,NB ,NB* ,NC ,NC*�= �20,0 ,20,0 ,30,0 ,50,0�.
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IV. THE ADVANTAGES AND DRAWBACKS
OF THE VARIATIONAL PRINCIPLE

The enzymatic reaction cascades of various lengths con-
sidered in Sec. III are a common occurrence, for instance, in
the MAPK family of signaling cascades.67–70 It is straightfor-
ward to extend the use of our variational scheme to more
complex cases, to cascades or networks with complex topol-
ogy. In general, the generating function is to be postulated in
an integral form, as demonstrated earlier for the two-, three-,
and four-step cascades, with the time-dependent parameter
functions being determined by a set of ODEs derived from
the variational principle. Our scheme may be used to treat
both the small and large particle number systems. It is many
orders of magnitude computationally more efficient in com-
puting the distributions compared with alternative numerical
simulation techniques such as the Gillespie algorithm or the
Langevin equation.

However, in the current form, the Ansatz has a number
of practical limitations, discussed next. It is difficult to rep-
resent efficiently distributions with multiple peaks, for ex-
ample, or to directly compute transition rates between two
deterministically stable states, a common scenario in a gene
switch modeling. Another problem is that the derived set of
ODEs is quite complicated; thus, symbolic algebra software
is necessary to carry out the necessary manipulations. The
method accuracy may also depend on the choice of the left
Ansatz. We chose the current left Ansatz form from several
trials for simplicity and efficiency. Occasionally when Eq.
�12� is used, the time evolution of the unknown functions
may result in a possible singularity, requiring work-arounds.
For reaction types other than the enzymatic one discussed
here, such as the binding reactions, the current basis func-
tions may not work properly, since the total particle number
of one species �including both the activated and inactive
ones� is required to be constant. This may not be true for
some arbitrary reaction, necessitating development of new
basis functions. However, this is straightforward, and the
general principles and considerations that were discussed are
expected to apply to those cases as well.

In general, sufficient accuracy may be achieved with a
large number of basis functions. The probability distributions
are obtained when �R is expanded at x=0 and the moments

FIG. 10. Comparison of the NC* average and variance computed for the
four-step cascade in the time interval t= �0,100�: Gillespie simulation
�circles�, integral form basis �solid line�, and Langevin equation �dashed
line�. g=0.2, k=0.1, �=0.02, �=0.15, �2=0.01, �2=0.07, �3=0.005, and
�3=0.05 with initial conditions �NR ,NR* ,NA ,NA* ,NB ,NB* ,NC ,NC*�
= �20,0 ,20,0 ,30,0 ,50,0�.
are obtained when �R is expanded at x=1. Therefore, �
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together with its derivatives is needed to be well approxi-
mated in the whole interval x� �0,1�. However, the variation
equations �11� only consider the validity of Eq. �2� in the
neighborhood of x=1. It is difficult to estimate the error
bounds of � and especially its derivatives near x=0, though
we know that it generally decreases with increasing accuracy
at x=1. The choice of basis function, therefore, is essential
for the variational technique to be successful.

From the above considerations one may expect that the
variational principle itself may still be improved. In Fig. 11,
we show the distributions of A* calculated with different
methods with a parameter set g=0.4, k=0.1, �=0.02, �
=0.15, and initial conditions �NR ,NR* ,NA ,NA*�
= �20,0 ,100,0�. In this case, the R−R* reaction is unusually
slow compared with the A−A* reaction so that the large fluc-
tuations in the first reaction are retained in the second one.
To obtain a highly accurate solution in this parameter regime,
a special convolution form was used to solve the generating
function PDE in our previous work.40 The current variational
scheme, however, underestimates the A* distribution vari-
ance. By manually adjusting the f2 and f3, we may obtain a
much better fit �solid line in Fig. 11�b��, demonstrating that
the variational calculation does not necessarily provide an
optimal solution. However, these results suggest that the
present time-dependent basis sets are powerful enough to
account for these extremely broad distributions. From the
experience of numerical solution of ODEs and the conven-
tional variational method in quantum mechanics, a better
variational strategy may be to consider simultaneously the
validity of Eq. �2� at all points on the interval �0,1�. We are
currently developing an improved variational approach to ad-
dress some of the shortcomings discussed above.

V. SUMMARY

Cells live in a fluctuating environment in which signals
and noise keep bombarding the cell receptors.1,71,72 Noisy
signals propagate inside the cell via microscopic chemical
reaction events. Cells have evolved to adapt to or even ex-
ploit the seemingly deleterious effect of fluctuations on sig-
naling dynamics within a mesoscopic size object. Thus, it is

FIG. 11. Comparison of the computed distributions for NA* at t=30 for the
two-step cascade: Gillespie simulation �circles�, integral form basis �solid
line�, � expansion �dotted line�, and Langevin equation �dashed line�. g
=0.4, k=0.1, �=0.02, and �=0.15 with initial conditions
�NR ,NR* ,NA ,NA*�= �20,0 ,100,0�. �a� f2�t=30�=0.7304 and f3�t=30�
=0.1413 calculated by integrating the ODEs derived from Eq. �20�. �b�
f2�t=30�=0.78 and f3�t=30�=0.3 estimated by best fitting the exact solu-
tion. Shown in the picture is only the distribution profile on �0, 60� with
other part close to zero.
important to develop a qualitative picture, based on math-
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ematical modeling of stochastic chemical kinetics, of how
signaling networks process noisy signals. In this paper, we
applied a variational principle to the solution of the master
equation which describes the noisy signal propagation.

The essential difficulty associated with the master equa-
tion approach is the enormous number of ODEs involved. To
compactly encode information, we use a QFT formulation in
which the evolution of probability distributions is governed
by one “quantum” wave equation. We have explicitly dem-
onstrated the equivalence of the field theoretic formalism
with the generating function approach, greatly facilitating the
practical application of the variational technique proposed by
Eyink.53 We further examined the significance of the varia-
tional principle in this context. According to our previous
investigation,40 we suggest two novel classes of time-
dependent basis functions: one is in simple algebraic form
and the other is in an integral convolution. These basis func-
tions are a key to the successful application of the variational
method to various signaling pathways. We applied the new
basis functions to describe stochastic signaling in two-step,
three-step, and four-step enzymatic cascades and compared
the obtained results with alternative solution techniques. The
variational scheme presented here works favorably in a large
parameter range. It treats effectively both the small and the
large particle numbers and is orders of magnitude faster to
compute compared with various Monte Carlo simulation al-
gorithms.

However, the current scheme has also some limitations.
The resulting evolution equations may be complicated and
their derivation requires considerably symbolic manipula-
tion, somewhat ameliorated by using modern computer alge-
bra software. We also showed that the variational principle
itself in this context is not the most optimal. Despite these
shortcomings, the present variational approach may already
be profitably applied to various signal transduction path-
ways, allowing one to obtain quantitative and semiquantita-
tive solutions to stochastic signaling dynamics in a broad
range of parameters. The technique may be further improved
to extend its limits of applicability, which is a work in
progress.

APPENDIX: APPLICATION OF THE VARIATIONAL
METHOD TO A SIMPLE BINDING REACTION

To further illustrate the use of the variational method, we
consider the following binding-dissociation reactions:

A + B → C with rate �; C → A + B with rate � .

�A1�

There are two independent constants in the above reactions,

NA − NB = const, NA + NC = const.

For simplicity, we consider the case NA=NB. The probability
of having n A’s in the system, P�n�, satisfies the following

master equation:
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dP�n�
dt

= ��n + 1�2P�n + 1� − �n2P�n�

+ ��N − n + 1�P�n + 1� − ��N − n�P�n� , �A2�

where N is the initial number of A or B. The generating
function �=�0

NP�n�xn satisfies

��

�t
= �1 − x���

�

�x
x

�

�x
− �N + �x

�

�x
�� . �A3�

Equation �A3� can be solved exactly through eigenfunction
expansion in terms of the Gegenbauer polynomials.73 The
obtained expression is cumbersome and nonintuitive. In-
stead, our variational method gives a simple approximate
solution.

As discussed in the main text, the formal procedure for
applying the variational technique is clear, but hinges on the
good choice of the basis functions. Here, if the number of B
were not to change much, the reaction �A1� would be essen-
tially linear and the characteristics method would give a
nearly exact binomial solution. However, in the current case,
the number of B is highly correlated with the number of A,
since NA=NB, such that the binomial solution is not exact.
Nevertheless, we can still use the following binomial expres-
sion as the right basis function in the variational treatment:

�R = �1 − f�t��x − 1��N. �A4�

This trial function guarantees that the total probability is con-
served during the evolution and the probability is zero out-
side the physically sensible region �0,N�. The ensuing varia-
tional scheme leads to an equation of motion for f�t�,

df

dt
= ��f2 − f − Nf2� + ��1 − f� , �A5�

which is quite similar to the deterministic equation and can
be solved exactly. In Fig. 12, we show the probability distri-
bution of NA at an early time t=2 and at a later time t=50,
when the system is equilibrated, with the parameter values
�� ,��= �0.002,0.1�. The variational approximation from
Eqs. �A4� and �A5� agrees closely with the exact solution
obtained through the Gillespie simulations. The exact profile
is insignificantly narrower than the approximate one, which
is presumably due to the correlation between the numbers of

FIG. 12. Comparison of the computed distributions for NA at t=2 �a� and
t=50 �b� for the binding-dissociation reactions given by Eq. �A1�: Gillespie
simulation �circles�, variational approach with simple basis, Eq. �A4�, �solid
line�. �=0.002 and �=0.1 with initial condition �NA ,NB ,NC�
= �100,100,0�.
A and B.
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If the first two terms in the parentheses that multiplies �
in Eq. �A5� were deleted, the resulting equation would cor-
respond to the deterministic equation. For the current param-
eter values, they are small compared to the third term in the
parentheses but their effect can already be seen from the
small difference in the averages. The variational average

N̄v=49.83 is very close to the Gillespie average N̄g=49.88
and both have a perceivable difference from the deterministic

average N̄d=50. For smaller N, this difference would be
more pronounced.

To a large extent, the success of the variational method
depends on the proper choice of basis functions. Unlike the
usual linear expansion, the unknown functions enter the basis
in a nonlinear way; thus, the projection exhibits different
properties from the commonly used linear projection. The
nonlinear set of basis functions represents a curved hypersur-
face in the functional space and is essential in compact de-
scription of the stochastic dynamics in terms of a few reac-
tion coordinates. On the other hand, we have no a priori
control of the approximation error and no systematic way of
choosing adequate basis functions. These are important is-
sues for future research.
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